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The Power Flow Equations

* Nonlinear, coupled quadratic form

« Solved using locally convergent techniques dependent
on an initial guess of solution voltages

Polar voltage coordinates: V. =V, e/
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Rectangular voltage coordinates: V, = V; + jV,;
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Optimal Power Flow (OPF) Problem

* Optimization used to determine system operation

— Minimize generation cost while satisfying physical laws and
engineering constraints

— Yields generator dispatches, line flows, etc.

* Large scale

— Optimize dispatch for several states
* Non-convex, NP-hard

e Studied for 40 years

— Existing methods do not guarantee global optimum
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Semidefinite Programming

e Convex optimization, finds global optimum

min trace (BW)
W

subject to
trace (A;W) < ¢;
W >0

Recall trace (AT‘W) — AWy + ApWia+ ...+ AW,

W =0 if and only if eig (W) > 0
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Semidefinite Relaxation of the
Power Flow Equations

: : T A -
« Write power flow equations as Air = ¢ .
where . = {Eﬂ | A T (S 1"}4

Define matrix W = r1!

Rewrite as trace (A,W) = ¢; and rank (W) = 1

Relaxation:
replace rank (W) =1 with W = 0

— rank (W) = 1 implies zero duality gap (“tight” relaxation) and
recovery of the globally optimal voltage profile [Lavaei ‘12]
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Example
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Application of Semidefinite
Programming to the Optimal
Power Flow Problem




Classical OPF Problem

| : cost
min Y fi (Pox) = Y e Py + cuPor + cox
keG keG
subject to PRI < Pgy, < PEYX E,,gineer l';i
- in
min I asl n5tra
QI < Qar < Qi co
(Vrmln) I _|_ I/ (L,;:nax)z
max 5

|Sfﬂ1‘ < Sf-m Physica’ Law

Fer — Ppr = Vy Z GirVai — BaVy) + Vi Z (BirVai + Gir Vi)

T

Qcr — Qpr = Var Z (—BiVii — GieVii) + Vi Z (GirVai — Bir Vi)

i=1
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Semidefinite Relaxation of the
OPF Problem

min Z cra (trace (Yr W) + PD;;)E + cp1 (trace (Yr W) + Ppr ) + €ro
W keg

subjectto Py " — Ppj < trace (Y, W) < P2 — Pp,
Gt — Qpy, < trace (‘I’kw) < Qcr — Qpr

(v n) < trace (M W) < (Vma7)?

trace Yg.mW)z + trace (?Em ) < (Smm)

Im

W =0 Semidefinite relaxation

- . ~ T
Tr = { Vio Vi ... Vi, %1 ng an }
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Duality Gap

* A physically meaningful solution has “zero duality gap”

— Same optimal objective value for classical OPF and
semidefinite relaxation

— W s rank one (subject to angle reference)

— Optimal voltage profile recoverable from semidefinite relaxation

« The semidefinite relaxation may not give physically
meaningful solutions

— A gap between optimal objective values for classical OPF and
semidefinite relaxation

— W s not rank one (subject to angle reference)

SDP OPF
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Duality Gap lllustration

Convex Relaxation (Not "Tight") Convex Relaxation ("Tight")
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Techniques for Large-Scale OPF
Problems




Large Scale

Overview

 Modeling advances
« Computational improvements

« Sufficient condition for global optimality
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Modeling Advances

* Multiple generators at the same bus

— Existing formulations limit total power
Injections at a bus

— Analogy to consistent locational marginal
price

* Flow limits on parallel lines and
transformers

— Existing formulations limit total flow
between two buses

— Limit flows on individual lines, including
off-nominal voltage ratios and non-zero
phase shifts

Large Scale
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Matrix Completion Decomposition

« Use sparsity to reduce solver time

e Computational bottleneck is constraint W = 0

— Scales as (2n)° for an n-bus system

Replace with positive semidefinite constraints on
many smaller matrices [Jabr11]

— Requires equality constraints between equivalent terms
In different matrices

Large Scale




1. No decomposition

2n

2n X 2n

Large Scale

Decomposition Improvement

2. Decomposition in 3. Proposed
existing literature decomposition
21 21
21 21
2'.714
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+ 2n9 X 2ns
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+ 2n4 X 2ny

+ linking constraints (gray)
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Computational Results

e Matrix combination heuristic provides a factor of
2 to 3 speed improvement over existing decompositions

System 2n x 2n No Combining | Speed Up
Combining | Heuristic Factor
IEEE 118-bus 6.63 4.84 2.06 2.349
[EEE 300-bus 69.45 13.18 5.71 2.309
Polish 2736-bus — 2371.7 792.7 2.992
Polish 3012-bus — 3578.5 1197.4 2.989

Solver Times (sec)

Large Scale




Large Scale

Sufficient Condition for Global

Optimality

 Determine if the solution from a traditional solver is
globally optimal

— Use the Karush-Kuhn-Tucker conditions for optimality of
the semidefinite program

o Complementarity:  trace (AW) =0

o Feasibility: A>0

e Globally optimal solutions to many small test
systems, indeterminate for some large systems
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Large Scale

MATPOWER Implementation

Proposed methods
Implemented In
MATLAB code that
Integrates with
MATPOWER

Preparing code for
public release

Solution satisfies rank and consistency conditions, 7343.05 =econds.
mineigratio = 1.5662Ze+005, zZero_ewal = 3.6567e-012
Objective Function Walue = 13085738.1Z2 §/hr

How many? How much? P (M 0 [(MVar)
Buses 2736 Total Gen Capacity Z8880.0 -25844.7 to l8056.1
Generataors 420 On-line Capacity 20246.7 -1830.7 to 11450.0
Committed Gens 270 Generation (actual) 15394.7 Z215.5
Loads 2048 Load 15074, 5 5339.5
Fixed Z045 Fixed 15074.5 5359.5
Dispatchahle u] Dispatchahble -0.0 of -0.0 -0.0
Shunts 1 Shunt (indg) -0.a -123.9
Branches 3504 Loszes (I*2 * Z) 317.00 21laz.10
Transformers 174 Eranch Charging (inj) - 5427.1
Inter-ties 17 Total Inter-tie Flow Z006.3 364,58
Areas 4
Minimum Maximam
Voltage Magnitude 0.994 p.u. @ bus Zled 1.120 p.u. @ bus 2320
Voltage Angle -30.93 deg @ bus 2190 23 deg [ bus 246
P Lozzes [I*Z%R) - .41 M @ line 28-25
0 Lozses [(I%2%X) - 100.11 MWAr @ line 28-25
Lamhda P 24,43 §/Mikh @ bus 2730 124.80 5/Mih @ bus 2321
Lambda 0O -4.85 §/Mih @ bus 2320 13.10 /M @ bus Zlgd
| Bus Data |
EBus Voltage Generation Load Lamhda (g /MVA-hr)
# Magipu) Angided) Po(Mm 0 [(MVAr) P (M 0 (MVir) P 1]
1 1.101 0.523 - - - - 97,926 0.173
2 1l.log 2.543 - - - - 97,542 -
1 0= - 4 = = = = 110 af 0 1zcg
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Results for Large-Scale Systems




Test System Results

 Many problems have zero duality gap solutions
— |EEE 14, 30, 57, and 118-bus test systems

— Polish 2736, 2737, and 2746-bus systems in MATPOWER
distribution

 Both small and large example systems with
non-zero duality gap solutions
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Large Systems Results

e Some solutions have zero duality gap

« QOthers have non-zero duality gap, but mismatch
(using closest rank one W matrix) at only a few buses

Mismatch at PQ Buses (IEEE 300-Bus System) Power Mismatch at PQ Buses (Polish 3012-Bus System)
5_. T T ----------E-----------------E _______________ ] 450_ ............ T - T - : ............. !.............4; ............ =
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;:: ) Q mismatch [MVAF} ADDF > Qmismatch (ij ............. ............ .
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; 5 E : : < 8
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g ) ﬁ 11 SRR R T C T PP PP PP SR RTP P PRI -
Lo T N P 4 g
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T i~ R -
: : : : : : : L
50 100 150 200 250 500 1000 1500 2000 2500 3000
PQ Bus Index PQ Bus Index

(a) Power Mismatch for [EEE 300-Bus System {(b) Power Mismatch for Polish 3012-Bus System




Disconnected Feasible Space

e Two-bus example system [Bukhsh 11]

v, R+ jX =0.04+j0.20 Va Feasible Space for Two-Bus System Objective Value
AT ($iper unit)
=3.525-j3.580 - . 480

475

ogs~ F Y0

- 465

L as0

455

450

0.45
445
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Conclusion

* A semidefinite relaxation finds a global optimum of
many OPF problems

e Large-scale solver exploits power system sparsity
using matrix decomposition

e Power injection mismatches in large systems appear
Isolated to small subsets of the network

e lllustration of non-convexities associated with non-
zero duality gap solutions

« Sufficient condition test for global optimality of a
candidate OPF solution
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