Sandia

Exceptional service in the national interest @ National
Laboratories

[OWA STATE
VST QU@
UCbDAvls U Nl

UNIVERSITY OF CALIFORNIA

ISO newengland

Scalable, Parallel Stochastic Unit
Commitment for Improved Day-Ahead
and Reliability Operations

FERC Technical Conference: Increasing Real-Time and Day-
Ahead Market Efficiency Through Improved Software

#T7 u3 ouRasTRENT oF [ — - o _ _ ) = _
G ] EHERGY Y 'l. 3_% Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Ih~...'.--“' e Corporation, for the U.S. Department of Energy’s National Nuclear Securi ministration under contract DE-AC04-94AL85000.

curity Ad




i) Retona

Project Team External Advisors

=  Sandia National Laboratories
= Ross Guttromson, MS, MBA, PE

= Eugene Litvinov, ISO-NE

= Jean-Paul Watson, PhD = Chairs Advisory Team
= Cesar Silva Monroy, PhD = Richard O’Neill, FERC
= Jowa State University = Ralph Masiello, KEMA

= Sarah Ryan, PhD

= Leigh Tesfatsion, PhD

= Dionysios Aliprantis, PhD
= Alstom Grid

= Kwok Cheung, PhD
= UC Davis

= Roger Wets, PhD

= David Woodruff, PhD
= |SO New England

= Eugene Litvinov, PhD

= David Morton, UT Austin



Project Goals ) .

= Execute stochastic unit commitment (UC) at scale, on real-world
data sets
= Stochastic UC state-of-the-art is very limited (tens to low hundreds of units)

= Qur solution must ultimately be useable by an ISO

= Produce solutions in tractable run-times, with error bounds

= Parallel scenario-based decomposition
= For both upper and lower bounding (Progressive Hedging and Dual Decomp.)

= Quantification of uncertainty
= Rigorous confidence intervals on solution cost
= Employ high-accuracy stochastic process models

= Leveraged to achieve computational tractability while maintaining solution
quality and robustness

= Demonstrate cost savings on an ISO-scale system at high
renewables penetration levels




Day-Ahead Unit Commitment
(SCUC D-8h)

= Day-Ahead Energy Market (DAEM or DAM)

= Clears demand bids and supply offers at 1600h on the day
prior to the operating day
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= Produces:

= Hourly schedules for the next operating day for market participants
(i.e., generation and demand)

= Hourly interchange schedules
= Hourly day-ahead Locational Marginal Prices (LMPs)

= No reserve requirements
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Reliability Unit Commitment - RUC @i
(SCUC D-2h)

= Reliability Assessment (Reserve Adequacy Analysis - RAA)

= Minimize additional start-up and no load costs to provide
sufficient capacity to satisfy the forecasted load plus the
operating and replacement reserve requirements

= (Clears ISO forecasted load at 2200h
= DAM commitments are respected

= Produces:
= Additional commitments
= Updated generator dispatch points

DAEM
(UC) RAA |

D-8h D-2h  00h 12h 24h




Look-Ahead Process — LA-SCUC -

= RAA with ability to bring online fast start resources
= Also known as Look-Ahead SCED
= |ntended to meet intra-hour reserve requirements
= Uses updated load and variable generation forecasts
= Produces:
= Generator set points
= Commitment of fast start units
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The General Structure of a Stochastic )&,
Unit Commitment Optimization Model

Obijective: Minimize expected cost
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Second stage variables
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Uncertainty in DAM, RUC, and LA- @i
SCUC Stochastic Programming Models

= Reliability Unit Commitment
= Renewables generator output, load, forced (unplanned) outages
= Fewer binaries than DAM, long time horizon, many scenarios

= |ook-Ahead Unit Commitment
= Similar to Reliability Unit Commitment
= Fewer binaries than RUC, short time horizon, few scenarios

= Day-Ahead Unit Commitment

= |n contrast to RUC and LA-SCUC, an ISO can’t really make direct use of
a stochastic UC in the DAM without changing DAM procedures

= With our partners, we are exploring alternative models and
experimenting with procedures that incorporate stochastic models

= We are eager to discuss ideas offline
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(D - == =
Scenario-Based Decomposition via g
Progresswe Hedging (PH)

. k=0

2. For all s € S, 23— argmin (c-x + fo-y) : (z,ys) € Q,

3. 75 1= (D s ps dl™)/ 30 s e d.

4. For all s € S, wl™ := p(2® — z(M)

5. k:=k+1

6. For all s € S :z:g"') r= argmin,(c - x + -u,.'gk_l):r. + p/2 ”;z: _ p(k=1) ”2 + £ u)
' o "o () € Q.

7. 2R = (3, esif;’sa?&L ))/Z es Ps ds

8 For all s € S, wi = w4 P (’rgk) — -:f?(k))

9. g i= (A 5 a0 — 50|

ses Ps ds

10. If g < €, then go to step 5. Otherwise, terminate.

Rockafellar and Wets (1991)
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Progressive Hedging: Some )
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Algorithmic Issues and their Resolution

= We are dealing with mixed-integer programs

= So we have to deal with the possibility of cycling and other
manifestations of non-convergence

= See: Progressive Hedging Innovations for a Class of Stochastic Mixed-
Integer Resource Allocation Problems, J.P. Watson and D.L. Woodruff,
Computational Management Science, Vol. 8, No. 4, 2011

= What about good values for that pesky p parameter?

" Poor or ad-hoc values of p can lead to atrocious performance

= The good news in unit commitment
= We have a lot of information concerning the cost of using a generator
= Cost-proportional rho is a known, effective strategy in Progressive Hedging

= Also see Computational Management Science paper indicated above




Progressive Hedging: )
Parallelization and Bundling

" Progressive Hedging is, at least conceptually, easily parallelized
= Scenario sub-problem solves are clearly independent
= Advantage over Benders, in that “bloat” is distributed
= Critical in low-memory-per-node cluster environments

= Parallel efficiency drops rapidly as the number of processors increases
= But: Relaxing barrier synchronization does not impact PH convergence

= Why just one scenario per processor?
= Bundling: Creating miniature “extensive forms” from multiple scenarios
= Diverse or homogeneous scenario bundles?
= Empirically results in a large reduction in total number of PH iterations

= Growth in sub-problem cost must be mitigated by drop in iteration count
= |n practice, mitigation is enabled by cross-iteration warm starts



Scenario Sampling: )
How Many is Enough?

= Discretization of the scenario space is “standard” in
stochastic programming

= Often, no mention of solution or objective stability

= Let alone rigorous statistical hypothesis-testing of stability
= Don’t trust anyone who doesn’t show you a confidence interval

= Various approaches / alternatives in the literature

= We like the Multiple Replication Procedure (MRP) introduced by
Mak, Morton, and Wood (1999)

"= Formal question we are concerned with

= What is the probability that X’s objective function value is
suboptimal by more than a%?

= But making due with a fixed set or “universe” or scenarios




The Multiple Replication Procedure
(Mak, Morton, Wood 1999)
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Input: Value o € (0,1) (e.g., @« =0.05), sample size n, replication size n,, and a candidate

solution = € X.
Output: Approximate (1 — a)-level confidence interval on p;.

1. For k=1,2,... ,n,:
1.1. Sample i.i.d. observations £*1,£*2 . £*¥" from the distribution of £.
1.2. Solve (SP,) usmg gr gk 5‘““ to obtain xF*.
1.3. Calculate G* (%) =n~1 Zj (f(£,E87) — f(zh* grT)).

2. Calculate gap estlmate and sa.mple va;riﬂmce by

g

Calng) =L 3°GEE) and B(ng) = — S (GE(E) — Culny))?

M, —1
ﬂk 1 q k=1

3. Let g =1n,—1,a5c(ng)/ /Mg, and output the one-sided CI on p;,

0, én[”g} +€g)-

From Bayraksan and Morton (2009) — Assessing Solution Quality in

_ Stochastic Programs Via Sampling
Slide 14




Illustrative MRP Results: ) i
Wind Farm Network Design

1000 scenarios, randomly sampled from a universe of 8760 scenarios

n ng n| Obj E(Obj) Gap(0.05) .

70 2 46589956 90639 ss| Key results:

70 5 186|39934 90639 764| e Objective function value is remarkably stable
70 10 93 [89941 90639 870 ) .

70 20 46(89929 90639 1127| across different parameterizations of the

70 40 23 |89929 90639 1356

140 2 430 |89734 89779 354 procedure

140 5 172|89721 89779 272| » Confidence interval widths are relatively small
140 10 B6 (89721 89779 462 .

140 20 43[89721 89779 792| for a planning problem

140 40 21| 89657 89779 1178 . .

280 3 360|89735 89648 05| ® Results are staI?Ie across replications of the
280 5 14489744 89648 435| same parameterization of the MRP procedure
280 10 7289750 89648 628

280 20 36 | 89750 89648 956

280 40 18189730 89645 14931 Practical impact: We don’t need 8760 scenarios!
420 2 290 | 90324 88832 251

420 5 116]90333 88832 555

420 10 58|90328 88832 718

420 20 29|90331 88832 996

420 40 14190284 88832 1664\ | ooking to stochastic UC: We need more

S60 2 22090577 89108 431 -

S60 5 88 |90587 89108 as6| scenarios, not less...

560 10 4490583 89108 800

S60 20 22 |90585 89108 1252

560 40 1190584 89108 2042
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Our Software Environment: Coopr

= Already discussed at this conference! -
= MD-1 (John Siirola) Wil

Carl Laird
Jean-Paul Watson
David L. Woodruff
= Project homepage Pyomo —
= http://software.sandia.gov/coopr Optlm!zatlon
Modeling
m “The BOOkH In Python

4

@Springer
= Mathematical Programming Computation papers

Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)
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Our Hardware Environments

= Qur objective is to run on commodity clusters
= Utilities don’t have, and don’t want, supercomputers
= But they do or might have multi-hundred node clusters

= Sandia Red Sky (Unclassified Segment) — 39t fastest on TOP500
= Sun X6275 blades

= 2816 dual socket / quad core nodes (22,528 cores)
= 2.93 GHz Nehalem X5570 processors
= 12 GB RAM per compute node (1.5 GB per core) << IMPORTANT!

= For us, the interconnection is largely irrelevant
= Red Hat Linux (RHEL 5)

= Sandia Red Mesa (with NREL)

= Similar to Red Sky, but dedicated for energy research
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A Few Words on UC Test Instances

= From the academic literature
= Hand-constructed instances (Silva Monroy)
= Textbook instances (Wood and Wollenberg)
= RUC test literature — 10 and 100 generator instances
= Simplified CAISO+WECC 240-bus test case

= From FERC
= PJM-inspired / anonymized large-scale DAM UC and RUC instance

= From Alstom Grid
= 70-bus test instance, used in development and testing of e-terramarket

= From ISO-NE

= Eastern Interconnection Planning Model-based instances




More Words on UC Test Instances @i

= What baseline deterministic UC model is best?
= Carrion and Arroyo
= Traditional three-binary generator state representation
= Ostrowski et al.

= Lesson Learned #1
= Not all models are correct, and all papers have unreported bugs

= Lesson Learned #2

= Performance is highly dependent upon the test case
= Lesson Learned #3

= Existing UC test cases are really bad

= |Lesson Learned #4

= Validating UC models is a highly non-trivial exercise
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Conclusions ) i
= Stochastic unit commitment has been studied in the literature
" |ndications are that it holds promise

= Computational challenges have prevented industrial adoption
= Far easier on paper and in academia than in practice...

= Qur objective is to develop scalable solutions to stochastic unit
commitment
= |n tractable run-times
= On ISO-scale systems

= To demonstrate (or not) both practical deployment ability and
cost savings

= Using reasonable, high-accuracy stochastic process models

= We are happy to talk to:

= |SOs, vendors, and academics working toward related goals




QUESTIONS
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