Transmission Outage Economic Analysis using Market Simulation Software

FERC Staff Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software

Lee Blaede
LEAD OUTAGE COORDINATOR, ISO NEW ENGLAND

Jim David
PRODUCT MANAGER FOR MARKET APPLICATIONS, POWERGEM

Boris Gisin
VICE PRESIDENT, POWERGEM
Need for Economic Analysis Program

• ISO New England (ISO) recognized need for better coordination of outages when markets are affected.
 – Heavy congestion and/or high LMPs in Day Ahead market
 – Negative congestion fund balance when short term outages are not coordinated in Financial Transmission Right (FTR) auctions

• Transmission Owners (TO)/Load Serving Entities recognized need for cost analysis
 – Responsible to state regulators and ratepayers for keeping transmission costs down
Background

• In 2005, ISO New England:
 – Was designated as a Regional Transmission Organization, broadening its authority over the operation of the region’s high voltage transmission system
 • Outage coordination role is expanded to include economic evaluations
 – ISO and stakeholders finalize Transmission Operating Agreement
 • ISO given central authority for congestion management
 • Participating Transmission Owners responsible for working with ISO on congestion management
 – Applicable Market Rules*
 • ISO has authority to deny or reposition transmission outages if they can result in “significantly reduced congestion costs”
 – Threshold set at $200,000 per week

* Section III, Market Rule 1 – Appendix G
Economic Analysis in Outage Coordination has Helped to Reduce Congestion

Day-Ahead Congestion Revenue

- 2005: $273,449,871
- 2006: $273,449,871
- 2007: $1,000,000
- 2008: $1,000,000
- 2009: $1,000,000
- 2010: $1,000,000
- 2011: $1,000,000

- 2012: $17,957,030
ISO’s Economic Analysis – the Early Years

• Initial Economic Analysis studies used simple generator economic-minimum hourly-energy over minimum run-time cost-calculation.

• Desire for more accurate analysis resulted in developing a study-time environment where the production Day Ahead market software could be run.
 – Slow: 45 minutes per market run
 – Inflexible: market parameters not easily changed
 – Manual commitment decisions (due to binding constraints): required many corrections and re-runs
 – Single day analysis only: extrapolation needed for multi-day outages
ISO’s Current Economic Analysis

• Outage Coordination Economic Analysis Tools (OCEAT)
 – ISO issued requests for proposal to vendors of market simulator products
 • PowerGEM PROBE market simulator chosen in 2008

• PROBE features:
 – Fast: 1 minute per one-day market simulation run
 – Flexible: input parameters easily changed
 – Proven Security Constraint Unit Commitment (SCUC) engine
PROBE Market Simulator

- Designed and customized to closely replicate the ISO’s Day Ahead market
- Full EMS network breaker/node model
 - Detailed hourly models accounting for intra-day outages
 - Full scale contingency analysis for all N-1 and selected N-2 interfaces
- Detailed modeling of all DA bids and market rules
- Advanced features
 - Limited Energy Generator model
 - Ancillary Services co-optimization
- Batch-mode automation allows execution of multiple days/scenarios
- Developed automated interface to production environment
Long-Term Outage Economic Analysis

- Evaluates transmission outages submitted at least 90 days in the future
 - Major transmission elements (i.e. 345KV and 115KV lines that affect generation or internal and external interfaces, etc.)

- Purpose:
 - Identify expensive or conflicting outage applications so they can be adjusted for cost savings
 - Move start/end dates
 - Coordinate conflicting transmission/generator outages
 - Provides economic approval
 - Provides relative certainty to Line owner that outage will proceed as scheduled even if conflicts occur in the short term.
 - Enables Market Administrators to confidently select the outage for inclusion in a monthly or annual FTR auction
 - Enables Long Term Outages Coordinators to confidently select the outage for monthly Forward Capacity Market reconfiguration auctions
Long Term Process

Submittal T - 365 days

- Outage Request (Preliminary State)
- Outage Request (Submitted State)
- Economic Study Required? MTE = Yes
- Economic Analysis
- Re-position?
- Negotiate (State)
- Interim Approved (State)
- Long-term Economic Approval (Flag)
- Damaged (State)
- Reliability Analysis (Study State)
- Acceptable
- Successful
- Unsuccessful
- Long-term Public Report (Updated Daily)

Submittal T - 90 days

- Outage Request (Preliminary State)
- Outage Request (Submitted State)
- Economic Analysis
- Re-position?
- Negotiate (State)
- Interim Approved (State)
- Long-term Economic Approval (Flag)
- Outages may be selected as MTO (Flag)

Submittal T - 21 days

- Outage Request (Preliminary State)
- Outage Request (Submitted State)
- Reliability Analysis (Study State)
- Acceptable
- Interim Approved (State)
- At Risk for Economics in Short-term Process
- Short-term Process
Short-Term Outage Economic Analysis

• Evaluates transmission outages 3-5 days prior to operating day
 – All transmission elements

• Purpose:
 – Identify expensive or conflicting applications
 • Prior to Day Ahead Market runs and Real Time Operations
 • Coordinate cost saving options with Transmission Owners
 – Move start/stop dates
 – Identify compensatory measures

• Outages with long-term economic approval or taken in FTR auction generally not considered
 – Conflicting outages with later timestamp evaluated and coordinated instead
Short Term Process

Short-term Process

Submittal T – 21 days
- Outage Request (Submitted State)
 - Reliability Analysis (Study State)
 - Acceptable
 - Yes: Approved (State)
 - No: Denied (State)
 - Acceptable
 - Yes: Denied (State)
 - No: Denied (State)

Submittal T – 5 days
- From Long-term Process
 - At Risk for Economics
 - Yes: Approved (State)
 - No: Denied (State)
 - Final Economic Analysis
 - Acceptable
 - Yes: Denied (State)
 - No: Denied (State)
 - No: Denied (State)

Submittal T – 1 day
- Unplanned Outages (Submitted State)
 - Reliability Analysis (Study State)
 - Acceptable
 - Yes: Denied (State)
 - No: Denied (State)
 - Approved (State)
 - Yes: Approved (State)
 - No: Denied (State)
 - Day Ahead Market Topology
 - Real-time Implementation

Short-term Public Report (Updated every 15 minutes)
PROBE Inputs and Assumptions

- All transmission and generation outages for study day populated to create 24 hourly models; approx. 13,000 buses.
- All interface and external tie limits enforced.
- Security Constrained solution
 - 1st Contingencies: approx. 1,500 total
 - 2nd Contingency in certain areas
- Actual bids/offers (including external transactions) from markets database, from very recent past day used.
- 7-day load forecast used for short term; 50/50 load forecast for long term.
How ISO uses PROBE

• Provides single-day or multi-day (hourly solution granularity)

• Day-Ahead style market run with following differences:
 – Forecast loads loaded (as opposed to price-sensitive demand and virtual bids)
 – Reliability commitments forced, if necessary

• Incremental production cost identified for each outage of interest

• Applications with more than $200,000 (per week) production-cost noted and reviewed with ISO supervision and affected Transmission Owners.
PROBE Outputs

• Incremental production cost represents:
 – Reliability-committed generation incremental costs
 – Reliability-committed generation startup and no-load costs
 – Expensive units dispatched out-of-merit due to transmission constraints causes by outages
 – Generation cost-savings of units displaced by reliability commitments
 – Cleared External Transaction differences due to different commitment/LMPs and transmission constraints
Benefits of OCEAT Process

• Ability to study more outage scenarios and outage combinations
• Flexible and simplified method to setup case assumptions
• Provides market solution information (binding constraints) earlier to enhance outage coordination
 – Greater awareness of cost by TOs; better scheduling
• Significant data availability to study additional impact of outages
 – FTR funding
 – Uplift
 – Total load payments
 – LMPs
 – Ability to export future models for more detailed AC and stability analysis
OCEAT Process has Resulted in Significant Savings

<table>
<thead>
<tr>
<th>Year</th>
<th>Long-Term Savings</th>
<th>#LT Outages Repositioned</th>
<th>Short-Term Savings</th>
<th>#ST Outages Repositioned</th>
<th>Total Transmission Outage Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>$71,049,025</td>
<td>6</td>
<td>$1,588,711</td>
<td>2</td>
<td>6,153</td>
</tr>
<tr>
<td>2009</td>
<td>$7,160,833</td>
<td>5</td>
<td>$4,297,314</td>
<td>1</td>
<td>5,729</td>
</tr>
<tr>
<td>2010</td>
<td>$2,946,482</td>
<td>5</td>
<td>$667,096</td>
<td>3</td>
<td>6,026</td>
</tr>
<tr>
<td>2011</td>
<td>$5,395,045</td>
<td>1</td>
<td>$552,900</td>
<td>2</td>
<td>5,818</td>
</tr>
<tr>
<td>2012*</td>
<td>$2,690,280</td>
<td>1</td>
<td>$425,491</td>
<td>2</td>
<td>2,563</td>
</tr>
</tbody>
</table>

Total Savings to Date: $96.77 million

Future Considerations

• Is Bid Production Cost (BPC) the best parameter for evaluating the cost of transmission outages?
 – BPC is the most conservative measure

• Other options for BPC:
 – Congestion fund payments
 – Uplift
 – FTR funding adequacy
 – Total load payments

• Anticipated future software efforts at ISO New England
 – Weekly (i.e., 168-hour) unit-commitment optimization
 – Methods for determining reposition dates for outages denied in cost
Questions