Determination of Optimal Reserve with Consideration of Variable Generation and Controllable Loads

Robert Entriken (EPRI)
Taiyou Yong (Eversource Consulting)

FERC Technical Conference
Washington, DC
June 29, 2011
Outline

• Introduction
• Stochastic OPF
• Project Contributions
 – Modeling Enhancements
 – Three Applications
• Project Report
Introduction

Industry Issues
- Reliable dispatch for high levels from variable generation (VG)
- Determining daily/hourly reserve
- Assessing operational risks
- Evaluating reliability under stressful conditions

P173.004 2010 Project Goals
- Examine various risk measures
- Multiple sources of uncertainty
- Ramping needs and constraints
- Application focus

Deliverable
- Technical Report

Many Enhancements and Applications
Stochastic OPF

- High wind penetration makes a difference between deterministic and stochastic

Deterministic
- Cost = 11,026
- LOLE = 0.134

Stochastic
- Cost = 12,599
- LOLE = 0.290

Lower Cost
Higher Reliability
Stochastic OPF

- More energy and reserve
- More diversification

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>54.0</td>
<td>56.0</td>
</tr>
<tr>
<td>G2</td>
<td>45.0</td>
<td>60.0</td>
</tr>
<tr>
<td>G3</td>
<td>110.0</td>
<td>19.0</td>
</tr>
<tr>
<td>G4</td>
<td>50.0</td>
<td>0.0</td>
</tr>
<tr>
<td>G5</td>
<td>46.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>305.0</td>
<td>135.0</td>
</tr>
</tbody>
</table>

Wind Variation at G5
20 MW to 60 MW

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>60.0</td>
<td>70.4</td>
</tr>
<tr>
<td>G2</td>
<td>55.0</td>
<td>50.0</td>
</tr>
<tr>
<td>G3</td>
<td>110.0</td>
<td>30.0</td>
</tr>
<tr>
<td>G4</td>
<td>50.0</td>
<td>0.0</td>
</tr>
<tr>
<td>G5</td>
<td>46.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>321.0</td>
<td>150.4</td>
</tr>
</tbody>
</table>

Deterministic
Cost = 11026 13793
LOLE = 0.134 0.495

Stochastic
Cost = 12599
LOLE = 0.290

© 2011 Electric Power Research Institute, Inc. All rights reserved.
Project Contributions
Model Enhancements

✓ Ramping Scarcity and Allocation
 – Ensure smooth, short-term operations

✓ Multiple Sources of Uncertainty
 – Better realism

✓ Reporting of Benefits and Risk Measures
 – Understand and quantify risks
 – Establish performance benchmarks
Example Enhancement for Ramping

- Ramping Scarcity and Allocation
 - Share ramp capability between energy ramping and reserve ramping
 - Sub-interval ramping means schedules will ramp
 - Implemented the multiple-stage optimal power flow problem with ramp-rate sharing and sub-interval deviation.
Example Enhancement for Ramping

- IEEE 9-Bus Network
- Uncertain Wind at Bus 5
- Contingencies at G1, G2, and G3

Without Ramping Allocation
Cost = 10448

With Ramping Allocation
Cost = 10536
Project Contributions

Three Applications

✓ Reserve Determination Supports Operations Planning
 – Decide energy and reserve schedules
 – Estimate the expected costs for redispatch

✓ Reserve Validation Supports Operations Planning
 – Given energy and reserve schedules
 – Estimate the expected costs for redispatch
 – Estimate risk levels

✓ Rapid Redispatch Supports System Operations
 – Given a sampling of redispatch scenarios
 – An actual event takes place
 – Rapidly compute a optimal or near-optimal re-dispatch
Example Rapid Redispatch

• Precomputed Redispatch Solutions
 – A, B, C, D, E

• Compute New Redispatch
 – P
 – Combination of closest points: A, E, D

• Simple Formulation Allows for Added Features
 – Limit Number and Location of Control Operations
Project Report

Product 1020501
Technique for Reserve Determination with Consideration for Conventional and Emerging Technologies

- Describes all enhancements
- Examples for all applications
- Appendices contain all GAMS code
- *Available now!*
Questions & Discussion
Together…Shaping the Future of Electricity
Appendix
Enhancement for Risk Measures

✓ Reporting Benefits and Risk Measures

– New estimates for measuring benefits and risk
 • Loss of Load Expectation
 • Expected Unserved Energy
 • System Reserve Margin
 • Duration and Frequency of Outages