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LOAD SHIFTING EFFECTS INDUCED BY A DEMAND SIDE
RESOURCE

DISPATCH IN THE DAY AHEAD MARKET Rebound
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GOALS

» Model DR in a UC setting
» Study the impact of solar

» Study the potential of DR to mitigate intermittency of renewable sources

» Solar, wind




PROBLEM FORMULATION

Minimize total generation cost (nonlinear)

Subject to:
conventional generation renewable generation demand side resources
(output deterministic) (output stochastic) (output stochastic)
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+ !

dispatch decisions in
previous and subsequent

periods
-+ -
I
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v

load shifted from

other periods
(stochastic)

load
(stochastic)

=  Minimum Uptime and Downtime Constraints
= Ramping Constraints
= Spinning Reserve Constraints
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PROBLEM FORMULATION & SOLUTION
APPROACH

= Formulation as a dynamic program

= Load shifting to period t may depend on dispatch decisions in periods t-1,t-
2,... and on dispatch decisions in periods t+1, t+2, ...

\ 4

Ve(Se) = H}EH{E{C;(IE,S:.WE) + Visa (St+1(xt-5bwr)}]

Classical DP formulations cannot handle this.

\ 4

Vtz(st) ~ nlltn {E{Ct(ztrxt!str W) + Vt+1z(5t+1(zt: Xtr St Wt)}}

= We make the Value Function dependant on a vector of'pe

= Vector Z in our case represents a complete schedule of DR dispatch decisions.



MODEL — MATHEMATICAL FORMULATION

= Attributes for each generator

generator index
uptime [hrs]
downtime [hrs]
online [1/0]

In state space, as is clustered

operating level [% of max]—

——— into intervals of Tize 1

ramp rate

Possible actions for each generator (subject to constraints)

do nothing
commit generator

decommit generator

ramp to level




MODEL — MATHEMATICAL FORMULATION

= Attribute transition function for each generator

T Qe 71 0 0 0 0 0
ae+1 0 0 -1-a;,; 0 O

Aryr = |z + 1 +]0 —1—ae; 0 0 0fx,
Agt 0 1 -1 0 0
0 L0 0 0 0 1

= (Disaggregate) state space R is count of generators with a certain value of the attribute
vector

= Size: |R| = n?=1f|ﬂi|

= State space is binary, since a; is generator index




UNIQUE MODEL FEATURES

= Segments DR bid curves are modeled as individual resources with corresponding bid
price and capacity

Bid Price

Cap. DSR 4
20
Bid DSR 4

15 - Cap. DSR 2
10 - Bid DSR 2

ol |

DSR1 DSR2 DSR3 DSR4
O | | I | } | |

Capacity
50 55 60 65 70 75 80 85

= Model captures preload and rebound effect on load
= |n periods before and after dispatch of a Demand Side Resource (DSR)

= Continuous dispatch decisions (segments can be dispatched partially)

= Monotone bid curves



UNIQUE MODEL FEATURES

= Residual load:
Bid Capacity

Lyes(t) = L(£) — S(t) — W(t) + iZg" ziCiBi; < load shifted to period t

Y
Load minus renewables \
dispatch dec. (0 < z; < 1)

= Random variable g;,: portion of load shifted to period t by dispatching DSR i

= YT, Bir gives total percentage of load shifted (can be < 100% or > 100%).

= Spinning reserve requirements modeled as chance constraint

» Dispatch of DSRs influences variance of L.(t)
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APPROXIMATE DYNAMIC PROGRAMMING

Initialize Value Function

Sample random information

Step forward through time
i

Solve myopic problem

Record optimal actions

Step backwards through time
i

Perturb generator's states

Calculate gradient

——
Update Value Function

Until stopping
criterion met

No explicit calculation of expected
value inside minimization

Instead sampling of random
variables

Stepping forward through time with
current value function
approximation

Choosing right structure of value
function is crucial

Aggregation of “similar states*
Then use separable piecewise

linear approximation for each
aggregated state




INCLUDING DEMAND RESPONSE —
SOLUTION APPROACH

* Progressive hedging based approach

min V,* () = min {E{Co(Z, %0, S0, Wo) + Vi (S1(Z, 0, S0, Wo)}}
L0
= Allow vector to take different values in different periods t, £

R A -
= Solve min Vo (S,) With

i

t+1 r o
Vi (S¢) = mm{ {Ct(zt: X, St We) + Verr”  (Sea1(Z5 %0, St Wt)} +(ZL W) + 5 1Z= — Z“z}

= In each iteration update W"*', = W", +r(Z* - Z) and Z"*! = %ZLUZ‘
= After each update Z represents an implementable schedule of DR dispatch
decisions.

= |t can be shown that the proposeda
and the resulting problem mln Vi (St) are convex in Z.
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DATA SETS

Load, Solar and Wind

»Historic hourly load data from CAISO region over 10 years

=Simulated hourly output of 47,151 photovoltaic installations in California using
radiation data from NREL over 8 years

=Simulated hourly output of 122 windfarms in California using meterological data from
NREL over 3 years

=>» Estimated parameters for normal distribution from observations
Generators

»Different number of generators 10 — 250
= Parameters have been chosen according to industry standards

Demand Side Resources

=No real world DR data is available
= Different scenarios were created (differing in DR capa
distributions and DR bid prices)
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ALGORITHMIC BEHAVIOR

Total cost Total cost
No DR dispatch (Z = 0 = const.) With DR dispatch (Z !=0)
il 1L
»r J
0 15 30 45 6]0) 75 0 15 30 45 60 75

Iteration lteration

» DR dispatch

» Tailing off is achieved later




® RESULTING LOAD AFTER SHIFTING BY DR
DISPATCH

Load before : DR Dispatch
DR dispatch [MW] Delay start-up Avoid start-up [MW]

1.150 - : _ 50
1.100 - | \
1,050 -

1,000 +

* DR helps to prevent start up of peak
= |n this scenario a 50 % of load was assumed to be lost
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Presentation Notes
Load before dispatch: gray curve

Bars show load shifting


® COST IMPACT OF VARYING DR BID
PRICES

315 - Average Total
~________— Generation Cost
(w/o DR cost)
300 A
285 A
270 . . ' | | Starting Price
5 10 15 20 25 30 of Bid Curve

= Bid curves with 5 segments, 15MW €3
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Higher bids, less DR cleared, more generators, higher cost


® COST IMPACT OF INCREASING DR
CAPACITY

Additional capacity ﬁ Additional capacity
315 - reduces generation cost : has limited value

300 -

-9%)

Average Total
- Generation Cost-Y
(w/o DR cost)

285 T

Capacity per
Segment [MW]

270 . . . i |
0 5 10 15 20 25 30

= Bid curves with 5 segments, starting a
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Segment: segment in the DR bid curve



Below 20, DR is cleared and reduces cost

Above 20, extra DR saturates the market and thus no additional cost savings


=
IMPACT OF LOAD VARIANCE ON COST AND
SAVINGS THROUGH DR

without DR dispatch i with DR dispatch
[USD 1,000] .

340 - _
330 +
320 -
310 +
300 +
290 +

280 -

low med - high ! low med high

_ e [ Avg. cost
» DR dispatch decreases cost o — = 95% conf. int.

= Variance is not considerably higher
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Presentation Notes
Note: z-values are NOT adjusted/optimized in simulation  same DR dispatch for every load sample path



Variance of the load: low, med, high

Dashed line: 95% confidence interval, 95 percent of the load leads cost within this interval



With DR: z doesn‘t change in simulation; low variance – z good match; high variance – z might not be a good match to load



Variance of load: applies through the day


IMPACT OF RENEWABLE VARIANCE ON COST
AND SAVINGS THROUGH DR

without DR dispatch i with DR dispatch
[USD 1000] .

340 - _
330 -
320 -
310 +
300 -
290 +

280 -

low med - high ! low med high

...... R [ Avg. cost

= Renewable output and load correlate negatively — = 95% conf. int.

= DR reduces variance introduced by renewables
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Presentation Notes
Change variance of solar and wind (the share of solar much larger than wind): solar and wind only in certain hours



The lowest cost is in medium variance – the load and solar variance coincide; they are negatively correlated






CONCLUSIONS

» Load shifting should not be neglected

» DSRs can serve to reduce variability in load and
generation introduced by stochasticity

» Usefulness of DR capacity decreases from certain point
on




WHAT'S AHEAD

» Improve scalability
» More efficient ways to calculate gradients
» Distributed computing

» Use Lagrangian combined with Benders to obtain optimality gaps
» Provides a bound only over sampled scenarios

» Debugging
» Energy storage

» No major changes to the model and algorithms

» Incorporation of transmission constraints




CHICAGO, COLD?
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