
Optimal Power Flow (OPF) in 
Large-scale Power Grid Simulation

06/24/2010

Cong Liu (liuc@anl.gov), Jianhui Wang, Jiaxin Ning
Decision and Information Sciences Division

Argonne National Laboratory



Outline

2

Decision and Information System Division

 I. Introduction and challenges of optimal power flow

 II. Three topics on optimal power flow

 Optimal power flow with post-contingency correction

 Optimal power flow with discrete control variables and two 
stage MIP

 Optimal power flow considering other energy 
infrastructures

 III. Summary and future work

6/24/2010



Introduction to optimal power flow
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 Applications
 Optimal production cost simulation with network 

constraints
 Minimal network loss in power grid
 Market clearing and locational marginal price calculation

 Mathematical formulation
 Continuous linear or nonlinear optimization problem 
 Stochastic optimization

 Algorithms
 Linear programming and successive linear programming
 Interior point method
 Quadratic programming 
 Heuristic method

6/24/2010



Three challenges in optimal power flow
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 Optimal power flow with post-contingency 
correction
 Difficulties: Huge number of contingency cases N-1…N-k 

 Optimal power flow with discrete control variables 
and two-stage mixed integer linear and nonlinear 
problem (MIP)
 Quick start units 
 Discrete control variables in networks
 Smart grid operations (energy storages, transmission 

switching)
 Optimal power flow considering other energy 

infrastructures
 Security interdependency (eg., natural gas network)
 Coordinated operation and planning
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Corrective and preventive actions in power 
system operations
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OPF for network 
check

OPF for network 
check

OPF for post-
contingency correction

OPF for post-
contingency correction

Unit CommitmentUnit Commitment

Contingency 
screening

Contingency 
screening
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Contingency Cases Number
WECC N-1 ~ 20,000

WECC N-2 ~154,000

WECC N-3 ~108

WECC N-4 ~1012

 Huge number of contingencies
 Contingency screening (CS)
 Degree of severity 

 Inclusion of probability into CS
 Probability of outage

Optimal power flow (OPF) with post-
contingency correction



Contingency screening
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 Extensive use of sparse linear algebra

 Fast decoupled AC power flow

 Compensation theory
 Branch outages can be considered as minor change of Y (B’ or B’’) 

matrices. An efficient way is to add additional elements into 
matrices B’ and B’’.
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Contingency screening (CS)
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 Concentric relaxation or bounding
 An outage only has a limited geographical effect on steady-state 

power flow.

 1P1Q or 2P2Q method
 Multi-area power flow

 Partitioning of admittance matrix

 Consider probability of outage into CS
 It is difficult to consider all N-1 to N-k contingencies. 
 We can define the better contingency list by considering 

probability of outage. 
 The probability of N-2 may be higher than some N-1 contingency.

Layer 0

Layer 1
Layer 2
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Calculate performance index and select 
contingencies

Calculate performance index and select 
contingencies

Parallelism for contingency screening
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Parallelism of OPF after dual or L-shaped 
decomposition
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 Contingency check can be implemented in a parallel way

 Multi-area optimal power flow
 Relax power flow in the tie-line or voltage variables in the 

boundary bus
 Dual decomposition by Lagrangian relaxation

6/24/2010

Area 1 Area 2

OPF or UCOPF or UC

OPF for post-
contingency 1
OPF for post-
contingency 1

OPF for post-
contingency 2
OPF for post-
contingency 2

OPF for post-
contingency N
OPF for post-
contingency N
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stage MIP
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Optimal power flow with discrete variables
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 Discrete control variables in power network 
 Quick- start unit, 
 Transmission switching, transformer tap-changer, 

capacitors,
 Smart grid flexible operations

 Mixed integer linear or nonlinear programming (MIP)
 Optimal power flow with discrete control variables has a 

similar mathematic structure to the unit commitment 
problem. Both of them are MIP.

 Branch and cut method 
 Mathematic decomposition (e.g. Benders decomposition)
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Two stage MIP
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OPF for network and 
contingency

OPF for network and 
contingency

Unit CommitmentUnit Commitment

Traditional Current

MIP MIP

Continuous linear 
or nonlinear 
programming

MIP

xc Min
bxA 

ccc hyFxE 

First-stage constraints

Second-stage constraints for each contingency

Objective

S.t.

 Original Problem
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Cuts



L-shaped structure and decomposition
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 Initial master problem 
(MIP)

 Feasibility of corrective 
action check 
subproblems for each 
contingency
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 Without quick-start units, second-stage 
subproblems are LP (or successive LP)

S.t. kc,kccccc πxEhSyF ˆ≤ --

  cTkkc, S1xw ˆMin

      0x-xEπxw kcTkc,kkc,  ˆˆ

 With quick-start units, second-stage subproblems 
are MIP, and its feasible region is non-convex.
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 With quick-start units, second-stage subproblems are MIP
 A straightforward approach is to enumerate all possible 

combinations of quick-start units’ commitments in each 
contingency subproblem
 If the objective value is zero for at least one combination, this 

subproblem is feasible, and no feasibility cut is necessary
 If objective values for all combinations are non-zero, this 

subproblem is infeasible, and feasibility cuts are generated
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Extended Benders decomposition for 
SCUC with post-contingency correction

1δ
n

n 



 Since the second stage subproblems may be feasible after post-
contingency corrections, feasibility cuts are formed only in 
infeasibility case. Optimality cuts are not required in this two-
stage MIP. 

 The process can be accelerated by using branch and cut method

        0δ1Mx-xEπxw n
kcTkc,kc,  ˆˆ
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Extended Benders decomposition for 
SCUC with post-contingency correction 
(continued)



A simple example

G3
10MW~40MW

G4
15MW~40MW

90MW

G1
40MW~80MW

G2  
15MW~ 40MW

System

Contingency Equipment Outage Load (MW)

1 G3 85

2 L2 93
L1  75MW

L2  75MW

 Three different models and solutions for quick-start units in post-
contingency correction subproblems 

1)  MIP-LP model: Relax integer variables in the second stage (approximation model). G2 
and G4 (0~40MW) 

2) Two-stage MIP model: solve MIP in the second stage. Then fix integer variables in the
second stage and form cuts from resulted LP.

3) Two-stage MIP model: Extended Benders decomposition

 Results:
1) Infeasible for contingency correction 2) Suboptimal 3) Global optimal

Contingency

 G1 and G3: they can be re-dispatched by 
5 MW

 G2 and G4: 30MW quick-start capability 

1 2
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Other two stage MIP in power grid simulation
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 Dual decomposition and L-shaped (Benders) 
decomposition: pros and cons

Problem First Stage Second Stage
UC with network constraints UC Transmission constraints

Contingency-based SCUC UC with pre-contingency 
transmission constraints

Post- contingency   
transmission constraints

Two-stage stochastic SCUC Decision costs and 
constraints

Recourse costs and 
constraints

Two stage distribution network 
expansion

Decision of building new 
distribution line Reconfiguration 

6/24/2010

Decompose by scenarios L-shaped decomposition
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 I. Introduction and challenges of optimal power flow

 II. Three topics on optimal power flow

 Optimal power flow with post-contingency correction

 Optimal power flow with discrete control variables and two 
stage MIP

 Optimal power flow considering other energy 
infrastructures

 III. Summary and future work
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Optimal power flow with other energy 
infrastructures

 Natural gas transmission system
 Texas: 70% electricity are 

generated by natural gas units
 Coordination between peaking 

units and renewable energy

 River and cascaded 
hydropower station
 Hydrothermal coordinated 

scheduling

 Transportation
 PHEV, Vehicle to Grid 
 Coal, Oil transportation

 Electricity infrastructure
 Smart grid
 Renewable energy
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Coupled energy flow
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 Steady-state integrated model have been 
proposed in the last decade

 Different energy flows travel via different 
speed through infrastructures
 Power flow: very small time constant
 Water flow: large time constant
 Natural gas flow: medium time constant
 transportation flow: medium time constant

 Potential application: security monitoring, 
reliability evaluation, planning

 Use dynamic model instead of steady-
state linear or nonlinear algebraic 
equations
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stage MIP
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Summary and future work at Argonne
 Three challenges of optimal power flow in power grid 

simulation are addressed. 

 Contingency screening method is nested into unit 
commitment and optimal power flow with post-
corrective action. Contingency analysis and optimal 
power flow study can be extended to a large-scale 
power system with parallel computing. Probability of 
outage cloud be included into contingency 
screening process.
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Summary and future work at Argonne
 Discrete variables will bring more difficulties in 

solving optimal power flow especially for two-stage 
MIP problems. Dual decomposition and L-shaped 
(Benders) decomposition techniques can be used to 
divide the original problem into several small-scale 
subproblems.

 Energy infrastructures are highly coupled, it is 
envisioned that using an integrated method to model 
optimal power flow and other energy flows together 
is necessary. 
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Corrective and preventive actions in power 
system operations
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OPF for network 
check

OPF for network 
check

OPF for post-
contingency correction

OPF for post-
contingency correction

Unit CommitmentUnit Commitment

Contingency 
screening

Contingency 
screening
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Contingency Cases Number
WECC N-1 ~ 20,000

WECC N-2 ~154,000

WECC N-3 ~108

WECC N-4 ~1012

 Huge number of contingencies
 Contingency screening (CS)
 Degree of severity 

 Inclusion of probability into CS
 Probability of outage

Optimal power flow (OPF) with post-
contingency correction



Contingency screening
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 Extensive use of sparse linear algebra

 Fast decoupled AC power flow

 Compensation theory
 Branch outages can be considered as minor change of Y (B’ or B’’) 

matrices. An efficient way is to add additional elements into 
matrices B’ and B’’.

U
QBU

U
PBθ  1)(1)( ][           ,][   kk

TMyMδBB   

U
PBMMBMyδMB

U
PBθ  111111)( ][)][]([][][    TTk

6/24/2010

LDUY =  



Contingency screening (CS)
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 Concentric relaxation or bounding
 An outage only has a limited geographical effect on steady-state 

power flow.

 1P1Q or 2P2Q method
 Multi-area power flow

 Partitioning of admittance matrix

 Consider probability of outage into CS
 It is difficult to consider all N-1 to N-k contingencies. 
 We can define the better contingency list by considering 

probability of outage. 
 The probability of N-2 may be higher than some N-1 contingency.

Layer 0

Layer 1
Layer 2
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Calculate performance index and select 
contingencies

Calculate performance index and select 
contingencies

Parallelism for contingency screening
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Parallelism of OPF after dual or L-shaped 
decomposition
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 Contingency check can be implemented in a parallel way

 Multi-area optimal power flow
 Relax power flow in the tie-line or voltage variables in the 

boundary bus
 Dual decomposition by Lagrangian relaxation
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OPF or UCOPF or UC

OPF for post-
contingency 1
OPF for post-
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OPF for post-
contingency 2
OPF for post-
contingency 2

OPF for post-
contingency N
OPF for post-
contingency N
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Optimal power flow with discrete variables
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 Discrete control variables in power network 
 Quick- start unit, 
 Transmission switching, transformer tap-changer, 

capacitors,
 Smart grid flexible operations

 Mixed integer linear or nonlinear programming (MIP)
 Optimal power flow with discrete control variables has a 

similar mathematic structure to the unit commitment 
problem. Both of them are MIP.

 Branch and cut method 
 Mathematic decomposition (e.g. Benders decomposition)
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Two stage MIP
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OPF for network and 
contingency

OPF for network and 
contingency

Unit CommitmentUnit Commitment

Traditional Current

MIP MIP

Continuous linear 
or nonlinear 
programming

MIP

xc Min
bxA 

ccc hyFxE 

First-stage constraints

Second-stage constraints for each contingency

Objective

S.t.

 Original Problem
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L-shaped structure and decomposition
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 Initial master problem 
(MIP)

 Feasibility of corrective 
action check 
subproblems for each 
contingency

  cTc S1xw ˆMin

S.t. xEhSyF ccccc ˆ≤ --

xc Min
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L-shaped structure

Decomposition



 Without quick-start units, second-stage 
subproblems are LP (or successive LP)

S.t. kc,kccccc πxEhSyF ˆ≤ --

  cTkkc, S1xw ˆMin

      0x-xEπxw kcTkc,kkc,  ˆˆ

 With quick-start units, second-stage subproblems 
are MIP, and its feasible region is non-convex.
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1Iquick 
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 With quick-start units, second-stage subproblems are MIP
 A straightforward approach is to enumerate all possible 

combinations of quick-start units’ commitments in each 
contingency subproblem
 If the objective value is zero for at least one combination, this 

subproblem is feasible, and no feasibility cut is necessary
 If objective values for all combinations are non-zero, this 

subproblem is infeasible, and feasibility cuts are generated

S.t. kc,kccccc πxEhSyF ˆ≤+ -
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kcTkc,kkc,  ˆˆ

0Iquick 

1Iquick 

6/24/2010

Decision and Information System Division

Extended Benders decomposition for 
SCUC with post-contingency correction

1δ
n

n 



 Since the second stage subproblems may be feasible after post-
contingency corrections, feasibility cuts are formed only in 
infeasibility case. Optimality cuts are not required in this two-
stage MIP. 

 The process can be accelerated by using branch and cut method

        0δ1Mx-xEπxw n
kcTkc,kc,  ˆˆ
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Extended Benders decomposition for 
SCUC with post-contingency correction 
(continued)



A simple example

G3
10MW~40MW

G4
15MW~40MW

90MW

G1
40MW~80MW

G2  
15MW~ 40MW

System

Contingency Equipment Outage Load (MW)

1 G3 85

2 L2 93
L1  75MW

L2  75MW

 Three different models and solutions for quick-start units in post-
contingency correction subproblems 

1)  MIP-LP model: Relax integer variables in the second stage (approximation model). G2 
and G4 (0~40MW) 

2) Two-stage MIP model: solve MIP in the second stage. Then fix integer variables in the
second stage and form cuts from resulted LP.

3) Two-stage MIP model: Extended Benders decomposition

 Results:
1) Infeasible for contingency correction 2) Suboptimal 3) Global optimal

Contingency

 G1 and G3: they can be re-dispatched by 
5 MW

 G2 and G4: 30MW quick-start capability 

1 2
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Other two stage MIP in power grid simulation
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 Dual decomposition and L-shaped (Benders) 
decomposition: pros and cons

Problem First Stage Second Stage
UC with network constraints UC Transmission constraints

Contingency-based SCUC UC with pre-contingency 
transmission constraints

Post- contingency   
transmission constraints

Two-stage stochastic SCUC Decision costs and 
constraints

Recourse costs and 
constraints

Two stage distribution network 
expansion

Decision of building new 
distribution line Reconfiguration 

6/24/2010

Decompose by scenarios L-shaped decomposition
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 I. Introduction and challenges of optimal power flow

 II. Three topics on optimal power flow

 Optimal power flow with post-contingency correction

 Optimal power flow with discrete control variables and two 
stage MIP

 Optimal power flow considering other energy 
infrastructures

 III. Summary and future work
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Optimal power flow with other energy 
infrastructures

 Natural gas transmission system
 Texas: 70% electricity are 

generated by natural gas units
 Coordination between peaking 

units and renewable energy

 River and cascaded 
hydropower station
 Hydrothermal coordinated 

scheduling

 Transportation
 PHEV, Vehicle to Grid 
 Coal, Oil transportation

 Electricity infrastructure
 Smart grid
 Renewable energy
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Coupled energy flow
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 Steady-state integrated model have been 
proposed in the last decade

 Different energy flows travel via different 
speed through infrastructures
 Power flow: very small time constant
 Water flow: large time constant
 Natural gas flow: medium time constant
 transportation flow: medium time constant

 Potential application: security monitoring, 
reliability evaluation, planning

 Use dynamic model instead of steady-
state linear or nonlinear algebraic 
equations
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 I. Introduction and challenges of optimal power flow

 II. Three topics on optimal power flow

 Optimal power flow with post-contingency correction

 Optimal power flow with discrete control variables and two 
stage MIP

 Optimal power flow considering other energy 
infrastructures

 III. Summary and future work
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Summary and future work at Argonne
 Three challenges of optimal power flow in power grid 

simulation are addressed. 

 Contingency screening method is nested into unit 
commitment and optimal power flow with post-
corrective action. Contingency analysis and optimal 
power flow study can be extended to a large-scale 
power system with parallel computing. Probability of 
outage cloud be included into contingency 
screening process.
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Summary and future work at Argonne
 Discrete variables will bring more difficulties in 

solving optimal power flow especially for two-stage 
MIP problems. Dual decomposition and L-shaped 
(Benders) decomposition techniques can be used to 
divide the original problem into several small-scale 
subproblems.

 Energy infrastructures are highly coupled, it is 
envisioned that using an integrated method to model 
optimal power flow and other energy flows together 
is necessary. 
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