Electricity Market Design with Renewable Energy: A Comparison of the United States and Europe

Audun Botterud
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology
Energy Systems Division, Argonne National Laboratory

Hans Auer
Energy Economics Group, TU Wien, Austria

FERC Technical Conference, June 27, 2018
Outline

- **Background**
 - Renewable energy levels
 - Drivers of electricity prices

- **Support schemes for renewables**
 - Most common support mechanisms in Europe and the United States

- **Short-term electricity market operations**
 - Comparison of European and U.S. markets

- **Long-term electricity market design**
 - Different approaches to resource adequacy
 - Comparison of European and U.S. markets

- **Recommendations and conclusions**
Literature on US-European Electricity Markets

We provide an updated review and comparison of electricity market designs, with specific focus on resource adequacy with more renewables.
Renewable Electricity in U.S. and Europe

- About twice as much renewables in Europe compared to United States; similar growth rates
- Hydropower still the largest renewable electricity resource, followed by wind power

<table>
<thead>
<tr>
<th>Technology</th>
<th>United States</th>
<th>Europe (EU-28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro [%]</td>
<td>6.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Wind [%]</td>
<td>0.4</td>
<td>5.5</td>
</tr>
<tr>
<td>Solar [%]</td>
<td>0.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Biomass [%]</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Other [%]</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Total [%]</td>
<td>8.8</td>
<td>15.6</td>
</tr>
<tr>
<td>Total [TWh]</td>
<td>358.2</td>
<td>640.3</td>
</tr>
</tbody>
</table>

Electricity and Natural Gas Prices in the U.S.
What drove down prices in CAISO and ERCOT?

Natural gas price decline is the dominant driver in reduced average annual wholesale prices from 2008 to 2016 in ERCOT and CAISO; VRE impacts are modest, in part due to relatively flat supply curve

Analysis based on simple supply curve model to estimate wholesale prices in 2016 and 2008 and factors that drove down prices over this period.

Electricity and Natural Gas Prices in Europe

Sources: EEG-EEMD (2017) and BAFA (2017).
VRE Impacts on Wholesale Electricity Prices

- The merit order effect reduces electricity prices
 - Empirical literature indicates a larger effect in Europe than the U.S.

- The occurrence of negative prices has also increased with higher VRE penetration levels

Negative prices in German electricity market

Source: Energy Brainpool (2017)
Negative Prices and VRE in U.S. Markets

Percentage of Annual Prices that are below $0/MWh

- Negative Price Frequency RT
- Negative Price Frequency DA
- VRE Penetration

- CAISO (SP15)
- ERCOT (North)
- SPP (OKGE/South Hub)
- MISO (Cinergy/Indiana)
- PJM (Western)
- NYISO (Zone G)
- ISO-NE (Mass)

Outline

- Background
 - Renewable energy levels
 - Drivers of electricity prices

- Support schemes for renewables
 - Most common support mechanisms in Europe and the United States

- Short-term electricity market operations
 - Comparison of European and U.S. markets

- Long-term electricity market design
 - Different approaches to resource adequacy
 - Comparison of European and U.S. markets

- Recommendations and conclusions
VRE Support Schemes and Carbon Policies

- **Europe**
 - Green certificates
 - Feed-in tariffs
 - Feed-in premiums
 - Auction schemes

- **United States**
 - Renewable portfolio standards (state)
 - Renewable portfolio goals (state)
 - Production tax credits (federal)
 - Investment tax credits (federal)

- **Carbon policies**
 - European emissions trading system (ETS)
 - Regional emissions trading in U.S. (Northeast and California)
 - Low carbon prices in recent years
VRE Support Schemes in Europe (2005)

VRE Support Schemes in Europe (2017)

- Auction Scheme (for Feed-in Premium Support)
- Feed-in Premium (Administrative Price Setting)
- Feed-in Tariff
- Quota/Certificate Scheme
- Other (e.g. Investment Support; Low Interest Loans)
- Auction-based Feed-in Premium & Feed-in Tariff
- Auction-based & Administrative Feed-in Premium

VRE Support Schemes in United States (2017)

Data source: DSIRE (2017)
VRE Indirect Enablers and Voluntary Schemes

- Net Metering
 - In majority of U.S. states
 - In several European countries

- Local Energy Sharing
 - Community solar
 - Microgrids

- Community choice aggregation
 - At city and county level in the United States
 - Often a high fraction of VRE

- Corporate interest in renewable electricity
 - Green electricity offered by food retailers in Europe
 - Purchasing of VER by corporations (e.g. Google 100% renewable)
Corporate Renewables Deals in U.S./Mexico

Publicly announced contracted capacity of corporate Power Purchase Agreements, Green Power Purchases, Green Tariffs, and Outright Project Ownership in the US and Mexico, 2012-2017. Excludes on-site generation (e.g., rooftop solar PV) and deals with operating plants. Last updated: January 5, 2018.

Source: http://businessrenewables.org/corporate-transactions/
VRE Support Schemes Influence Market Prices

VRE Penetration and Market Prices with Different Policies (“ERCOT-like system”)

<table>
<thead>
<tr>
<th>Policy</th>
<th>Abbreviation</th>
<th>Metric</th>
<th>Scenario Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Tax</td>
<td>CTAX</td>
<td>$/ton</td>
<td>$30-$90</td>
</tr>
<tr>
<td>Investment Tax Credit</td>
<td>ITC</td>
<td>% of capital cost</td>
<td>20%-60%</td>
</tr>
<tr>
<td>Production Tax Credit</td>
<td>PTC</td>
<td>$/MWh</td>
<td>$10-$30</td>
</tr>
<tr>
<td>Renewable Portfolio Standard</td>
<td>RPS</td>
<td>% of generation</td>
<td>30%-50%</td>
</tr>
</tbody>
</table>

Levin et al., in progress.
Outline

- Background
 - Renewable energy levels
 - Drivers of electricity prices

- Support schemes for renewables
 - Most common support mechanisms in Europe and the United States

- Short-term electricity market operations
 - Comparison of European and U.S. markets

- Long-term electricity market design
 - Different approaches to resource adequacy
 - Comparison of European and U.S. markets

- Recommendations and conclusions
Electricity Markets in United States and Europe

- United States
 - Build into existing system operators (ISOs)
 - Short-term system operation
 - ISOs do not own transmission system
 - *Emphasize physics of the power system*
 - Short-term market operations
 - Day-ahead market (ISO - hourly)
 - Real-time market (ISO - 5 min)
 - Complex bids/ISO UC
 - Locational marginal prices
 - Co-optimization of energy and operating reserves
 - *Centralized control through ISO*

- Europe
 - Introduced new power exchanges (PXs)
 - Include long-term contracts
 - TSOs typically own transmission system
 - *Emphasize markets and economics*
 - Short-term market operations
 - Day-ahead and intraday markets (PX)
 - Real-time balancing markets (TSO)
 - Simple bids/generator UC
 - Zonal pricing/market coupling
 - Sequential reserve and energy markets
 - *Decentralized balancing through balance responsible parties*

Who should solve the optimization problem?
Electricity Markets in United States and Europe

United States
- Variable renewable energy
 - Intermittent policy support
 - Tax credits, renewable portfolio standards
 - "Dispatchable" VER
- Retail competition
 - Retail choice in some states

Europe
- Variable renewable energy
 - Strong policy support
 - Feed-in tariffs - premiums, tenders/auctions
 - VER as "must-take"
- Retail competition
 - Retail choice in all countries
Outline

- Background
 - Renewable energy levels
 - Drivers of electricity prices

- Support schemes for renewables
 - Most common support mechanisms in Europe and the United States

- Short-term electricity market operations
 - Comparison of European and U.S. markets

- Long-term electricity market design
 - Different approaches to resource adequacy
 - Comparison of European and U.S. markets

- Recommendations and conclusions
The Revenue Sufficiency Challenge with VRE

- **AC**: Average cost of power plant technology (assuming linear cost function)
- **MC**: Marginal cost of power plant technology (CCGT and nuclear)
- **q**: Annual power plant generation for different VRE levels (low, medium, high)
- **P_{min}**: Minimum average annual price during dispatch required for full cost recovery

Graph Details

- **Price/Cost Axis**
- **q, Annual Generation Axis**
- **Increasing VRE levels**
- **AC_{CCGT} = \frac{C_{fix,CCGT}}{q_{CCGT}} + MC_{CCGT}**
- **AC_{Nuke} = \frac{C_{fix,Nuke}}{q_{Nuke}} + MC_{Nuke}**

[Diagram showing the relationship between price/cost, annual generation, and VRE levels]
Resource Adequacy Paradigms

- **Energy only market**
 - Prices in energy (and reserves) markets provide investment incentives
 - Importance of scarcity rents
 - Provides the best performance incentives

- **Capacity mechanisms**

```
  Capacity mechanisms
   ├── Quantity-based mechanisms
   │    └── Strategic reserves
   │    └── Capacity obligations
   └── Price-based mechanisms
      └── Capacity markets
          └── Capacity payments
```
Resource Adequacy: Current Status in U.S.
Capacity Mechanisms

- **Capacity payments**
 - **Pros:** Stable revenues for generators
 - **Cons:** May not achieve desired reliability level, may result in over/under compensation

- **Capacity markets**
 - **Pros:** Target level of reliability achieved, limited market intervention
 - **Cons:** Uncertain revenues for generators, hard to determine demand

- **Capacity obligations**
 - **Pros:** Can address flexibility requirements
 - **Cons:** High degree of centralized planning

- **Strategic reserves**
 - **Pros:** High level of control for system operator (owning the reserve)
 - **Cons:** High degree of market intervention
Limited Assessment of U.S. Capacity Markets

$51 billion paid in four U.S. capacity markets, 2013-2016

Lack of performance goals for capacity markets

Frequent re-design of capacity markets (e.g. two-tiered markets)

Capacity markets receive limited focus in the research domain

ELECTRICITY MARKETS

Four Regions Use Capacity Markets to Help Ensure Adequate Resources, but FERC Has Not Fully Assessed Their Performance
Differences in U.S. Capacity Market Designs

Comparison of demand curves for capacity auctions. *Figure not to scale.*

Outline

- Background
 - Renewable energy levels
 - Drivers of electricity prices
- Support schemes for renewables
 - Most common support mechanisms in Europe and the United States
- Short-term electricity market operations
 - Comparison of European and U.S. markets
- Long-term electricity market design
 - Different approaches to resource adequacy
 - Comparison of European and U.S. markets
- Recommendations and conclusions
Towards Improved Electricity Markets with VRE: General Recommendations

- Gradual removal of technology specific subsidy schemes for clean energy
- Adequate pricing of carbon/other environmental externalities as a market compatible incentive scheme for clean energy resources
- Improved price formation in energy and reserves markets, particularly during scarcity situations
- Improved incentives for system flexibility from supply, demand and energy storage
- Move day-ahead markets closer to the operating day
- Enable participation of distributed energy resources and demand response in electricity markets
- Reduce reliance on explicit capacity mechanisms to incentivize investments
Specific Recommendations for Europe and US

Europe

- Improved representation of transmission in market clearing
- Better coordination between TSOs
- Imbalance netting to avoid opposite activation of reserves
- Shortening timeframes in intraday markets
- Higher frequency of real-time dispatch and market clearing
- Co-optimization of energy and reserves
- Economic dispatch of renewable resources
- Further develop retail competition

United States

- Increased liquidity and transparency in long-term contracts
- Implementation of intraday markets for market-based balancing
- Higher time resolution of settlements in real-time energy and reserve markets
- Further refinements of products in ancillary services markets
- Full co-optimization of energy and reserves in all regional U.S. markets
- Better coordination between regional capacity, energy, and reserves markets
- Open up for retail competition in larger parts of the country

Europe United States
Concluding Remarks

- The impacts of VRE on electricity markets are more visible in European compared to U.S. electricity markets.
- U.S. electricity markets better aligned with physics of the power grid: more centralized coordination and control.
- European electricity markets more focused on economics: power exchanges also include long-term contracts.
- No single solution: lessons to be learned in both directions.
- How much of the “optimization problem” should be solved by system operators vs. market participants?
- Getting the price formation in short-term energy/reserve markets is the key challenge.
- Capacity mechanisms only as a back-up.
Acknowledgements

- Collaborators
 - Hans Auer, TU Wien, Austria
 - Todd Levin, Argonne National Laboratory
 - Andrew Mills, Lawrence Berkeley National Laboratory
 - Ryan Wiser, Lawrence Berkeley National Laboratory
 - Conleigh Byers, Massachusetts Institute of Technology

- MIT International Policy Lab

Audun Botterud

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Center for Energy, Environmental, and Economic Systems Analysis
Energy Systems Division
Argonne National Laboratory

+1 617 452 3443
audunb@mit.edu

Key Issues Addressed in Paper

- What are differences and similarities in electricity market design in Europe and the United States?
- How does the rapid increase in wind and solar resources impact electricity markets in the short- and long-term?
 - Wind and solar penetrations levels
 - Support schemes for variable renewable electricity (VRE)
 - Treatment of renewables in electricity market operations
- Summarize key electricity market design characteristics in Europe and United States
- Electricity market design options for resource adequacy
- Recommendations for improvements in electricity market design (general, Europe and US specific)
U.S. Capacity Additions and Retirements

Historical capacity prices. The Limited number of data points, differences in market rules across markets, and changes in market rules within markets make it difficult to identify clear trends in the prices.

Negative Prices in PJM Node 2014 (West Illinois)

Historical Negative Prices

Price [$/MWh]

Time [hour]

2014 Prices in Illinois PJM Node: 4 QUAD C18 KV QC-1