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Outline

• Overview of OPF feasible spaces and convex 

relaxations

• Example feasible spaces for both straightforward 

and challenging OPF problems

• Existing tools for exploring feasible spaces and 

their limitations

• A new algorithm for feasible space exploration

• Conclusions
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Introduction and Background
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Optimal Power Flow (OPF) Problem

• Optimization used to determine system operation

‒ Minimize generation cost while satisfying physical laws and 

engineering constraints

‒ Yields generator dispatches, line flows, etc.

• Large scale

‒ Optimize dispatch for multiple states or countries

• Many related problems:

‒ State estimation, unit commitment, transmission switching, 

contingency analysis, voltage stability margins, etc.

Introduction

“Today, 50 years after the problem was formulated, we still do not 

have a fast, robust solution technique for the full ACOPF.” 
R.P. O’Neill, Chief Economic Advisor, US Federal Energy Regulatory Commission, 2013.
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Feasible Spaces of OPF Problems

• Defined by the equality and inequality constraints

‒ Equality constraints: power flow equations

‒ Inequality constraints: engineering limitations

• Geometry of the feasible space is a key aspect of OPF 

problem difficulty

• Generally non-convex, may have multiple local minima 

and disconnected components

Introduction
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Classical OPF Problem

Generation Cost

Engineering 

Constraints

Physical Laws

Introduction
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Convex Relaxation

Relaxation does not find global optimum 

(non-zero relaxation gap)

Relaxation finds global optimum

(zero relaxation gap)

Decreasing objective

Non-convex

feasible 

space

Global

optimum

Local 

optimum

Introduction
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Semidefinite Programming

• Convex optimization

• Interior point methods solve for the global optimum 

in polynomial time

Recall: 

where      and      are specified symmetric matrices

Introduction
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Semidefinite Relaxations

• Write power flow equations as

where 

• Define matrix

• Rewrite as                                  and

• Relaxation: do not enforce the rank constraint

‒ implies zero relaxation gap (“exact” solution) 

and recovery of the globally optimal voltage profile 
[Lavaei & Low ‘12]

‒ Generalizable to hierarchies of convex relaxations
[Lasserre ‘01, M. & Hiskens ’14, M. & Hiskens ‘15, Josz & M., in review]

Introduction
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Example Feasible Spaces
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Universally Convexifiable Feasible 

Spaces

• A tree network* has a feasible space with a Pareto 

front that is equivalent to the Pareto front of its 

convex hull [Zhang & Tse ‘11]

* (satisfying certain non-trivial conditions)

P1

P2

Direction of decreasing cost

P1
max

P2
max

Examples



13 / 46

Universally Convexifiable Feasible 

Spaces

• A tree network* has a feasible space with a Pareto 

front that is equivalent to the Pareto front of its 

convex hull [Zhang & Tse ‘11]

* (satisfying certain non-trivial conditions)

P1

P2

Direction of decreasing cost

P1
max

P2
max

Examples



14 / 46

Disconnected Feasible Space

• Two-bus example OPF problem  
[Bukhsh et al. ‘11]

Feasible Space of the

Semidefinite Relaxation

Examples
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Disconnected Feasible Space

• Two-bus example OPF problem  
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Non-Convex Space for a 

Lossless System

• Five-bus example OPF problem  [Lesieutre & Hiskens ‘05]

Examples
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Hole in the Feasible Space

• Three-bus example OPF problem  

Feasible Space of 

the OPF Problem

Feasible Space of the 

Semidefinite Relaxation

[M., Baghsorkhi & Hiskens ‘15]

Examples
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“Rules of Thumb” Associated with 

Challenging OPF Problems

• Systems where generators have limited ability to 

absorb reactive power

• “Low-voltage” power flow solutions within the 

admissible voltage range

• Tight limits on apparent power flows

Goal: Extend and formalize these “rules of 

thumb” and apply to large test cases.

This requires new computational tools to 

study small test cases.
Examples



22 / 46

Existing Tools for Exploring

OPF Feasible Spaces
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“One-Off” Approach to Previous 

Examples

• All previous examples were generated as “special 

cases” exploiting specific problem structure

‒ 2-bus system: reduce to cubic equation, solve explicitly

‒ 5-bus system: analytic expression that exploits problem 

specific symmetries

‒ 3-bus system: uses a homotopy approach that is only suitable 

for very small problems

Existing 

Tools
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Continuation Along Power Flow 

Boundary

• Algorithm:

‒

‒

‒

Existing 

Tools

[Hiskens & Davy ‘01]

P1

P2
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Continuation Along Power Flow 

Boundary

• Algorithm:

‒ Start at an interior point

‒

‒

Existing 

Tools
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Continuation Along Power Flow 

Boundary

• Algorithm:

‒ Start at an interior point

‒ Continuation method to reach the boundary

‒

Existing 

Tools

[Hiskens & Davy ‘01]

P1

P2
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Continuation Along Power Flow 

Boundary

• Algorithm:

‒ Start at an interior point

‒ Continuation method to reach the boundary

‒ Continuation along contours of the boundary by enforcing 

singular power flow Jacobian

Existing 

Tools

[Hiskens & Davy ‘01]

P1

P2

...
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Limitations of Existing Approaches

• Approach by Hiskens & Davy not guaranteed to obtain 

entire feasible region

‒ Need an initial interior point

‒ Only finds a single connected component

‒ May fail with sharp non-convexities

• Other approaches are only applicable to very small 

systems or systems with special symmetries

Studying difficult problems raises concerns 

regarding the possible failure of existing tools

Existing 

Tools
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New Algorithm for Visualizing 

OPF Feasible Spaces
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Numerical Polynomial Homotopy 

Continuation (NPHC) Method

• Guaranteed to find all complex solutions to systems of 

polynomial equalities

• Limited to small (   10 bus) systems

‒ Recent work may enable solution of somewhat larger problems
[M., Mehta, & Niemerg ‘16]

Feasible 

Space 

Algorithm

Target polynomial system

Homotopy from                     :

Simple polynomial system

with known solutions

Random complex scalar
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Feasible Space Algorithm

1.

2.

3.

4.

5.

P1

P2

Feasible 

Space 

Algorithm
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Feasible Space Algorithm
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Feasible Space Algorithm
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Feasible Space Algorithm

1. Use convex relaxations to tighten the OPF constraints

2. Use “gridding” to convert from inequalities to equalities

3. Use convex relaxations to eliminate provably infeasible points

4. Calculate all power flow solutions at each grid point using the 

NPHC method

5. Select solutions that satisfy all constraints

P1

P2

Feasible 

Space 

Algorithm
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Advantages

• Guaranteed to obtain the complete feasible space, 

within the discretization chosen for the grid

‒ Inherits robustness of NPHC method

• Can hotstart NPHC method using solutions at a nearby 

grid point

• Applicable to many small test cases known to be 

challenging

Feasible 

Space 

Algorithm
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Results: Five-Bus System

• Five-bus example OPF problem (modified objective)  
[Bukhsh et al. ‘13]

Global 

Solution

Local

Solution

Feasible Space of OPF Problem

Feasible 

Space 

Algorithm
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Results: Five-Bus System
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Feasible Space of SDP Relaxation
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Results: Five-Bus System

• Five-bus example OPF problem (modified objective)  
[Bukhsh et al. ‘13]

[Madani, Sojoudi, & Lavaei ’15]
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Results: Five-Bus System

• Five-bus example OPF problem (modified objective)  
[Bukhsh et al. ‘13]

Feasible Space of Second-Order 

Moment Relaxation

Generalization of the SDP relaxation finds the global solution

Feasible 

Space 

Algorithm
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Conclusion
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Conclusion

• The difficulty of solving OPF problems depends on 

the geometry of the associated feasible spaces

• Proposed a new approach for computing OPF 

feasible spaces

• Future work: compute feasible spaces for modified 

OPF formulations

‒ Study difficulty imposed by various aspects of OPF problems, 

e.g., generator capability curves, line additions/outages, etc.

Conclusion
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Questions?
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