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In the proposed Benchmark GMD,
both visual extrapolation and
rigorous extreme value analysis
(peaks over threshold) were used
to extrapolate the computed
geoelectric fields to 1-in-100 year
occurrences (Pulkkinen et al.,
2015).

— The results from the two agree very

well.

In the extreme value analysis, both
daily maxima and de-clustering
were used to ensure statistical
independence of the samples.

— Also solar cycle modulation was taken
into account.
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Source spatial scales

Due to the complex source structure,
the most extreme dB/dt and calculated
geoelectric field enhancements are
observed to often be spatiotemporally
localized (Pulkkinen et al., 2015; Ngwira
etal., 2015).

— Consequently, it is not appropriate
to apply single station extreme
values over large areas.

One needs to avoid bias caused by
localized enhancements in wide-area
extreme event analyses.

— Spatial average can be used as a
measure to characterize the field
strength over wide areas.

— Averaging is consistent with
geomagnetically induced currents
(GIC) being proportional to an

integral operation of the geoelectric
field.
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Geoelectric field distribution on 1989-03-13 21:46 UT. Max. IEl: 5.91 V/km.
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Geoelectric field distribution at 16:49 UT. Max. |EI: 5.68 V/km.
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While we know that auroral boundaries move
during the storm times, we also observe
saturation or stoppage of the expansion at
peak times (Thomson et al., 2011; Pulkkinen et
al., 2012; Ngwira et al., 2013).

— Saturation seen for all extreme storms
since 1980s in both ground- and space-
based data.

— The boundary lies approximately
between 40-60 degrees of geomagnetic
latitude.

Saturation of some of the key polar-auroral
ionospheric parameters is a known
characteristic of geospace (e.g., Ridley, 2005;
Xiong et al., 2014).

Global observations are required to detect the
boundary location at any given time.

— One cannot determine the location from
a single measurement.
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1D — variations only as a function of depth.
2D — variations as a function of depth and
single lateral dimension. 3D — variations in
all directions.

While approximate, 1D ground models have
been the workhorse of GIC studies for
decades across the globe (e.g., Vilianen and
Pirjola, 1994, Kappenman et al., 2000;
Boteler, 2001; Thomson et al., 2005;
Pulkkinen et al., 2007).

— Demonstrated to work well in many situations if

accurate effective 1D representation of the
ground is available.

— Well-suited also for hazard assessments.

The science is advancing and full 3D
modeling of both the source and the ground
response (e.g., Puthe et al., 2013;
Bendrosian and Love, 2015) will be
beneficial also for the future GIC science.

Ground model dimensionality
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Bottom line

The science is mature enough for us to take action now.

The scientific research will go on and future observations,
models and new understanding of the GIC physics will help
to refine the assessments.

Some of the key ongoing community-wide research
activities with connection to GIC:

— National Space Weather Strategy and Action Plan (National
Space Weather Strategy, 2015).

— NASA Living With a Star Institute GIC Working Group (NASA LWS
Institute, 2015).

— EarthScope (http://www.earthscope.org - project mapping the
detailed geology of the US).
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