


2 

 State of knowledge and modeling capabilities iro 
harmonics and vibration.  
 

 Impacts of harmonics and vibration on equipment 
(e.g. protection, reactive sources, generators).  
 

 Power system impacts of reactive power demand.  
 



 GICs in transformers generate harmonics and unbalance, 
and GIC is not constant.   

 Quebec event : voltage and reactive power swings 
preceded system collapse [Balma, 1992].  

 Vars from transformers change with  GIC magnitude and 
direction, compounded by capacitor banks tripping to 
protect them from overheating by harmonics. 

 IEEE Std 1459-2010 represents conventional knowledge 
of reactive power.  Includes distortion by harmonics, but 
not unbalance and DC. 

 General power theory (GPT) [Malengret & Gaunt, 2008, 
2011, 2012, 2013] accommodates all shape distortion. 
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Q  =  total non-active power  
Qa = component compensated 

without energy storage 
QA = component needing energy 

storage for compensation  
S  =  apparent power without 

compensation 
Sa =  apparent power after comp 

without energy storage 
SA =  apparent power after 

complete compensation,  
         so SA = P  

Power factor is index of relative 
efficiency of delivery. 

Components of non-active power 
are orthogonal. 
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 Capacitor banks and SVCs correct Q by storing 
energy to control V-I phase shift. 

 Harmonic distortion and unbalance trip capacitors to 
protect them. 
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Czech et al., 1992 

Power flow 

07:45 UT 



 Tripping of cap. banks and SVCs increases Q 
required from source: 

       lowers efficiency of power delivery, 

       voltage falls. 

 Distortion reduces efficiency further (not defined in 
IEEE Std 1459-2010): 

 probability of system collapse higher than 
expected from standard load flow analysis. 

 High apparent power S contributes to heating and 
degradation. 
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 GIC threshold requiring thermal impact 
assessment of transformer; 75 A/ph?  
 

 System assessments, including interaction 
with equipment vulnerabilities (e.g. 
harmonics).  

 



 In half-wave saturation, leakage flux causes eddy 
current heating in core plates, windings and tank. 

 Heating intensity and location vary with GIC 
magnitude, transformer core structure and design 
details. 

 NERC proposes transformers be checked by 
simulation if simulated GIC exceeds 75 A/ph (225 A 
in neutral). 
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Four GMDs cause disruption: 

1. Intense short (10-120 sec) disturbance, possibly local, 
initiates spurious or correct relay tripping; cascade 
tripping possible (Quebec 1989). 

2. Sustained high GMD, high GICs >50 A/ph for 1-60 min, 
overheats transformers (Salem and UK 1989); 
transformer fails in days. 

3. Moderate GMD and GICs ~40A(n) cause rapid localised 
heating in transformer; degradation continues after 
GIC, transformer fails in weeks to months (SA, 2003). 

4. Regular (nightly) GMD from coronal holes; cumulative 
low energy degradation. 
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Extreme 
events:  

System 
collapse 

 

Equipment 
damage 



Halloween Storm: 29-31 October 2003. 
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Rapid heating with only 16.7 A/ph (50 A neutral) 
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Different transformers respond differently to GICs. 

 Practical experience of rapid transformer failure 
below 75 A/ph. 

 Factory tests show rapid heating with 16.7 A/ph. 

 Successive GMDs have cumulative effects. 

 NERC’s 75 A/ph threshold for assessment is too 
high. 

Recommend threshold: 15 A/ph. 
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 Failure cost =  
               fseason/time (loads, faults, interruption cost) 

 GIC impact added. 

 Probabilistic modeling assesses Value@Risk. 

 V@R reflects ‘public benefit’, and is basis of 
assessing mitigation options. 

 V@R replaces N-1, N-2 Contingency Assessment. 
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 Modeling capabilities to use non-uniform 
E-fields to calculate grid GIC flows – 
present and soon. 

 
 Advantages/disadvantages of using non-

uniform E-fields in GIC calculations.  
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SECS method allows GICs in non-uniform fields to be 
calculated – history and real-time. 

NERC’s uniform field benchmark over-simplifies reality. 
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 Real GICs have greater 
dispersion, changing Q 
impact. 

 Variables of non-uniform 
GMD require scenario 
testing. 

 More complex planning. 

 



State of knowledge and modeling capabilities are 
advanced and advancing all the time, 

… but are not implemented. 
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