Decentralized Robust Optimization Algorithms for Tie-Line Scheduling of Multi-Area Grid with Variable Wind Energy

Dr. Bo Zeng, University of South Florida

Joint work with
Zhigang Li, Dr. Wenchuan Wu, Dr. Boming Zhang, Tsinghua University, China
Dr. Mohammad Shahidehpour, Illinois Institute of Technology
Outline

- Background and Motivation
- Robust Optimization Formulations and Properties
- Distributed Computing Methods through Alternating Direction Method of Multipliers (ADMM)
- Numerical Study and Demonstrations
- Conclusions
Part I: Background and Motivation

- Multi-area power system
 - Physically separated regions (China)
 - Different electricity market
- Intermittent renewable energy
- Random contingencies
- Aligned LMPs for boundary nodes
Challenges in Multi-Area Power Grids

- Systems are cooperative but operated independently
 - Privacy
 - Commercial information

- Protocols between systems to support cooperation:
 - Coordinated Transaction Scheduling: NYISO and PJM
 - Interchange Optimization: PJM and MISO
 - Inter-Regional Interchange Scheduling: ISONE and NYISO

- Interfaces between multiple systems: tie-lines
 - Power flow decisions (day-ahead and intraday)
 - Unit commitment decisions (day-ahead)
Decision Models for Multi-Area Power Grids

- Lagrangian relaxation
 - Conejo and Aguado (1998), Multi-area coordinated decentralized DC optimal power flow
 - Aguado, Quintana, and Conejo (1999), Optimal power flows of interconnected power systems

- Augmented Lagrangian decomposition
 - Kim and Baldick (1997)
 - Ahmadi-Khatir, Conejo, and Cherkaoui (2014)

- Alternative Direction Method of Multipliers (ADMM)
Uncertainty Consideration in Power Grids

- Scenario based probabilistic models
 - Stochastic programming (SP) and chance constrained formulation
 - Explicit large-scale models but many existing computing methods: e.g., Ahmadi-Khatir, Conejo, and Cherkaoui (2013, 2014):
 - SP+ augmented Lagrangian relaxation
 - Issue: Inaccurate prediction of scenarios and probabilities -> infeasible solutions

- Robust optimization models
 - Uncertainty set based compact formulation
 - Produce highly feasible solutions by considering all possibilities inside uncertainty set
 - Two types of algorithms: Benders decomposition and column-and-constraint generation
 - Our aim: integration of decentralized computing scheme + robust optimization
Part II: Robust Optimization Formulations and Properties
Multi-Area Robust Tie-Line Scheduling

- Two-stage decision making framework

\[
\min_{\xi^f \in \Omega^f} \sum_{a \in A} \left\{ \max_{P^w \in U^w} \left[\min_{\xi^w_a \in \Omega^w_a} C^{ED}_a \left(\xi^f_a, \tilde{P}_a^w \right) \right] \right\}
\]

- Tie-line interchanges: the first-stage decisions before the availability of wind energy is known
 - Phase angles at boundary buses:

\[
\xi^f_a = \{\xi^f_a, \forall a \in A\}, \quad \xi^w_a = \{\delta_a, i_d, \forall g \in G_a, i \in N^a_{BB} \cup N^{BB}_a, t \in T\}
\]

\[
\Omega^f = \{\xi^f \left| \delta_{\phi(i),i,t} = \delta_{\phi(j),j,t}, \quad \delta_{\phi(i),j,t} = \delta_{\phi(j),j,t}, \quad \left| \delta_{\phi(i),j,t} - \delta_{\phi(i),j,t} \right| \right\} \leq \bar{F}_{i,j}, \quad \forall (i, j) \in E^{tie}, \quad i > j, \quad t \in T
\]

- Economic dispatch: the second-stage decision after wind energy is revealed.
 - Continuous model
Inter-regional constraints

- Region-coupling constraints - perceived phase angles are same at two ends of a tie-line

\[\delta_{a,i,t} = \delta_{b,i,t}, \quad \delta_{a,j,t} = \delta_{b,j,t}, \quad \forall t \in T \]
Economic Dispatch of Each Area

- Dispatch of conventional generation units, wind farms, and phase angles of internal buses

\[
\begin{align*}
\Omega_s^a (\xi^f_a, \tilde{P}_w^a) &= \{ \xi^f_a \} \\
\sum_{j_c \in \Psi^d_a (i)} (\theta_{i,j} - \theta_{j,i}) / X_{i,j} &= \sum_{g \in \Psi^g_a (i)} p^G_{g,t} + \sum_{k \in \Psi^w_a (i)} p^w_{k,t} - \sum_{d \in \Psi^d_a (i)} p^B_{d,t}, \forall i \in N_a^{\text{IB}}, t, \\
\sum_{j_c \in \Psi^d_a (i)} (\delta_{a,i,j} - \theta_{j,i}) / X_{i,j} &= \sum_{g \in \Psi^g_a (i)} p^G_{g,t} + \sum_{k \in \Psi^w_a (i)} p^w_{k,t} - \sum_{d \in \Psi^d_a (i)} p^B_{d,t}, \forall i \in N_a^{\text{IB}}, t, \\
-F_{i,j} &\leq (\theta_{i,j} - \theta_{j,i}) / X_{i,j} \leq F_{i,j}, \forall i \in N_a^{\text{IB}}, j \in \Psi^d_a (i), j > i, \\
-F_{i,j} &\leq (\delta_{a,i,j} - \theta_{j,i}) / X_{i,j} \leq F_{i,j}, \forall i \in N_a^{\text{IB}}, j \in \Psi^d_a (i), \\
p_{g,t}^G + r_{g,t}^{G^+} &\leq p_{g}^G, \forall g \in G_a, t \in T, \\
r_{g,t}^{G^-} &\geq p_{g,t}^G - p_{a}, \forall g \in G_a, t \in T, \\
\sum_{g \in G_a} r_{g,t}^{G^+} &\geq \sum_{g \in G_a} r_{g,t}^{G^-}, \forall t \in T, \\
0 &\leq r_{g,t}^{G^+} \leq RU_{g}^G, 0 \leq r_{g,t}^{G^-} \leq RD_{g}^G, \forall g \in G_a, t \in T, \\
0 &\leq p_{k,t}^w \leq \tilde{P}_{k,t}^w, \forall k \in W_a, t \in T \}
\end{align*}
\]
Observation:

- If the uncertainty sets \mathcal{U}_a^w are polyhedra, the robust multi-area tie-line schedule problem is a convex optimization (an extremely large-scale linear program).

- Idea: enumerating all extreme points of \mathcal{U}_a^w to construct the equivalent formulation, which is an LP.
Multi-Area Generation Unit and Tie-line Scheduling

- Two-stage decision making framework

\[
\min_{\xi^f \in \Omega} \sum_{a \in A} \left\{ C_{UD}^f (\xi^f_a) + \max_{P^w_a \in U^w_a} \left[\min_{\xi^f \in \Omega} C_{ED}^a (\xi^f_a, \tilde{P}_a^w) \right] \right\}
\]

- First-stage decisions: unit commitments and tie-line interchanges

\[
\xi^f = \{ \xi^f_a, \forall a \in A \}, \xi_s^f = \{ u^G_{g,t}, x^G_{g,t}, y^G_{g,t}, \delta_{a,i,t}, \forall g \in G_a, i \in N_a^{BB} \cup N_a^{tBB}, t \in T \}
\]

\[
\Omega^f = \{ \xi^f \mid \forall a \in A, g \in G_a, t \in T, \delta_{\phi(j),i,t} = \delta_{\phi(j),j,t}, \delta_{\phi(i),i,t} = \delta_{\phi(i),j,t}, \delta_{\phi(i),i,t} - \delta_{\phi(i),j,t} \}
\]

\[
u^G_{g,t} - \nu^G_{g,t-1} = x^G_{g,t} - y^G_{g,t}, \quad \sum_{t = \max\{1, t - MU^G_{a,t} + 1\}}^{t} x^G_{g,t} \leq u^G_{g,t}, \quad \sum_{t = \max\{1, t - MD^G_{a,t} + 1\}}^{t} y^G_{g,t} \leq 1 - u^G_{g,t}, \forall g, t
\]

\[
u^G_{g,t} \in \{0,1\}, \quad 0 \leq x^G_{g,t} \leq 1, \quad 0 \leq y^G_{g,t} \leq 1\]
Multi-Area Generation Unit and Tie-line Scheduling (Cont’d)

- Second-stage decisions: economic dispatch after the available wind power is revealed and unit status are determined

- Observation:
 - Due to binary variables for unit scheduling, the robust formulation is equivalent to a non-convex and discrete mixed integer program

- Challenge: augmented Lagrangian methods typically do not converge
Part III: Distributed Computing Methods through ADMM
Augmented Lagrangian Relaxation

- Relaxing $\delta_{a,i,t} = \delta_{b,i,t}$, $\delta_{a,j,t} = \delta_{b,j,t}$, $\forall t \in T$

- Averaging $\bar{\delta}_{i,t} = \frac{\sum_{a \in \Phi(i)} \delta_{a,i,t}}{|\Phi(i)|}$

- Augmented model

$$
\min_{\xi_a^f} L_a(\xi_a^f, \lambda_a, \bar{\delta}) = \sum_{i \in \mathbb{N}} \sum_{a \in T} \left[\lambda_{a,i,t} (\delta_{a,i,t} - \bar{\delta}_{i,t}) + \frac{p}{2} (\delta_{a,i,t} - \bar{\delta}_{i,t})^2 \right]$$

$$+ \max_{P_a^* \in U_a^*} \left[\min_{\xi_a \in \Omega_a(\xi_a^f, P_a^*)} C_a^{ED}(\xi_a, P_a^*) \right]$$

$$= C_a^f(\xi_a^f, \lambda_a, \bar{\delta}) + \max_{P_a^* \in U_a^*} \left[\min_{\xi_a \in \Omega_a(\xi_a^f, P_a^*)} C_a^{ED}(\xi_a, P_a^*) \right]
$$
Overall Algorithm Scheme

- Using ADMM, each area can be computed independently
 - distributed computing and privacy protection

- For a single area problem: two-stage robust optimization
 - column and constraint generation method
 - finitely convergent for a polyhedron uncertainty set

- Integrated ADMM+CCG (IAC) Solution Method
 - Multi-area robust tie-line scheduling: ADMM+CCG converges to optimal value
 - Multi-area robust generation unit and tie-line scheduling: convergence is NOT guaranteed
 - Computational enhancements? Speed and convergence
Fast Computing

- **Warm Start (WS):**
 - select initial values of the first-stage variables and dual variables using the deterministic version

- **Scenario Retaining (SR):**
 - CCG is repeatedly called within ADMM framework
 - Keep and re-use existing scenarios generated in previous CCG calls

- **Scenario Discard (SD):**
 - Remove non-critical scenarios to maintain a small pool
 - Dynamically manage a scenario pool through a changing threshold

- SR and SD are key steps in distributed computation of Robust Optimization
Convergence Issue from UC

- Non-convergence due to non-convex structure from binary commitment decisions

- Alternating optimization procedure to ensure convergence (heuristically)
 - Alternatively computing with boundary phase angles or commitment status are fixed
 - A repeated commitment status indicates termination
 - Finitely converged
Part IV: Numerical Study and Demonstrations
Two-Area 12-Bus Interconnected System
Tie-line Flows
IAC Performance for Tie-line Scheduling

(a) Maximum residue and Tolerance

(b) Maximum tie-line flow difference
Computational Enhancement Strategies

<table>
<thead>
<tr>
<th>Case</th>
<th>WS</th>
<th>SR</th>
<th>SD</th>
<th># iter.</th>
<th>Time (s)</th>
<th># iter.</th>
<th>ADMM</th>
<th>C&CG</th>
<th>Total time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>516</td>
<td>469</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53.4</td>
</tr>
<tr>
<td>M1</td>
<td>-</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>151</td>
<td>152</td>
<td>223.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>234.2</td>
</tr>
<tr>
<td>M2</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>179</td>
<td>179</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.1</td>
</tr>
<tr>
<td>M3</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>5.1</td>
<td>41</td>
<td>82</td>
<td>82</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.3</td>
</tr>
<tr>
<td>M4</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>21</td>
<td>5.2</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.7</td>
</tr>
</tbody>
</table>

M0: IAC without enhancement
Coordination Effect with Unit Commitment

Slightly higher than the centralized solution by 0.11%
Performance in Large Systems

<table>
<thead>
<tr>
<th>System</th>
<th>Areas</th>
<th>Units</th>
<th>Buses</th>
<th>Int. Lines</th>
<th>Tie-lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A-RTS</td>
<td>2</td>
<td>66</td>
<td>48</td>
<td>76</td>
<td>3</td>
</tr>
<tr>
<td>3A-RTS</td>
<td>3</td>
<td>99</td>
<td>73</td>
<td>115</td>
<td>5</td>
</tr>
<tr>
<td>118-Bus</td>
<td>3</td>
<td>79</td>
<td>118</td>
<td>174</td>
<td>12</td>
</tr>
</tbody>
</table>
Simulation Results on Large-Scale Test Systems

<table>
<thead>
<tr>
<th>Uncertainty Budget</th>
<th>(\Gamma = 0)</th>
<th>(\Gamma = 6)</th>
<th>(\Gamma = 12)</th>
<th>(\Gamma = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A-RTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obj. ($)</td>
<td>5,982,249</td>
<td>6,104,215</td>
<td>6,182,390</td>
<td>6,203,326</td>
</tr>
<tr>
<td>Time (s)</td>
<td>2.4</td>
<td>15.2</td>
<td>24.0</td>
<td>9.8</td>
</tr>
<tr>
<td># iter.</td>
<td>101</td>
<td>103</td>
<td>103</td>
<td>107</td>
</tr>
<tr>
<td>Time (s)</td>
<td>17.9</td>
<td>92.1</td>
<td>79.4</td>
<td>98.7</td>
</tr>
<tr>
<td>Error (%)</td>
<td>0.00</td>
<td>0.24</td>
<td>0.26</td>
<td>0.37</td>
</tr>
<tr>
<td>3A-RTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obj. ($)</td>
<td>9,151,653</td>
<td>9,333,234</td>
<td>9,459,759</td>
<td>9,510,397</td>
</tr>
<tr>
<td>Time (s)</td>
<td>3.6</td>
<td>33.6</td>
<td>106.7</td>
<td>9.9</td>
</tr>
<tr>
<td># iter.</td>
<td>226</td>
<td>320</td>
<td>316</td>
<td>339</td>
</tr>
<tr>
<td>Time (s)</td>
<td>34.4</td>
<td>830.4</td>
<td>501.9</td>
<td>676.5</td>
</tr>
<tr>
<td>Error (%)</td>
<td>0.00</td>
<td>0.17</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>118-Bus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obj. ($)</td>
<td>2,249,048</td>
<td>2,250,762</td>
<td>2,252,142</td>
<td>2,255,044</td>
</tr>
<tr>
<td>Time (s)</td>
<td>4.4</td>
<td>4.6</td>
<td>4.7</td>
<td>4.2</td>
</tr>
<tr>
<td># iter.</td>
<td>491</td>
<td>535</td>
<td>573</td>
<td>600</td>
</tr>
<tr>
<td>Time (s)</td>
<td>197.1</td>
<td>285.1</td>
<td>325.2</td>
<td>348.3</td>
</tr>
<tr>
<td>Error (%)</td>
<td>0.00</td>
<td>0.03</td>
<td>0.05</td>
<td>0.12</td>
</tr>
</tbody>
</table>

IAC for Tie-line Scheduling
IAC for Generation Unit and Tie-line Scheduling

<table>
<thead>
<tr>
<th>System</th>
<th>Uncertainty Budget</th>
<th>$\Gamma = 0$</th>
<th>$\Gamma = 6$</th>
<th>$\Gamma = 12$</th>
<th>$\Gamma = 24$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A-RTS</td>
<td>Centr. Obj. ($)</td>
<td>1,014,164</td>
<td>1,018,237</td>
<td>1,039,095</td>
<td>1,044,114</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>597</td>
<td>3,005</td>
<td>1,617</td>
<td>1,451</td>
</tr>
<tr>
<td></td>
<td>IAC Obj. ($)</td>
<td>1,019,117</td>
<td>1,034,468</td>
<td>1,055,462</td>
<td>1,061,706</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>127</td>
<td>3,642</td>
<td>4,186</td>
<td>788</td>
</tr>
<tr>
<td></td>
<td>Gap (%)</td>
<td>0.49</td>
<td>1.59</td>
<td>1.58</td>
<td>1.66</td>
</tr>
<tr>
<td>3A-RTS</td>
<td>Centr. Obj. ($)</td>
<td>1,529,977</td>
<td>1,535,347</td>
<td>1,565,097</td>
<td>1,576,184</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>25</td>
<td>4,196</td>
<td>5,876</td>
<td>4,821</td>
</tr>
<tr>
<td></td>
<td>IAC Obj. ($)</td>
<td>1,541,769</td>
<td>1,562,666</td>
<td>1,583,698</td>
<td>1,591,784</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>125</td>
<td>2,360</td>
<td>1,757</td>
<td>3,486</td>
</tr>
<tr>
<td></td>
<td>Gap (%)</td>
<td>0.77</td>
<td>1.78</td>
<td>1.19</td>
<td>0.99</td>
</tr>
<tr>
<td>118-Bus</td>
<td>Centr. Obj. ($)</td>
<td>1,101,662</td>
<td>1,111,969</td>
<td>1,112,181</td>
<td>1,112,431</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>19</td>
<td>922</td>
<td>316</td>
<td>867</td>
</tr>
<tr>
<td></td>
<td>IAC Obj. ($)</td>
<td>1,111,116</td>
<td>1,113,739</td>
<td>1,117,006</td>
<td>1,119,490</td>
</tr>
<tr>
<td></td>
<td>Time (s)</td>
<td>172</td>
<td>4,775</td>
<td>918</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>Gap (%)</td>
<td>0.85</td>
<td>1.06</td>
<td>1.34</td>
<td>1.54</td>
</tr>
</tbody>
</table>
Part V: Conclusions
Observations and Conclusions

- An integrated ADMM+CCG computing method
 - Supporting information and privacy protection in handling uncertainties
 - Advanced enhancement strategies for fast computation
 - New strategies to ensure convergence in non-convex structures

- Coordination plays a critical role in multi-area grid performance
 - For tie-line scheduling, IAC performs (almost) the same as centralized method
 - For commitment and tie-line scheduling, IAC significantly outperforms non-coordinated control

- Future Improvement
 - Economic implications from IAC computation
 - Novel algorithmic improvement to support fast computing