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 Dealing with uncertainty
» We have to design policies to manage the different 

forms of uncertainty.
» We do this by looking for robust policies, which are 

rules for making decisions.
» We write our optimization problem in the form:

Designing a policy
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 Dealing with uncertainty
» We have to design policies to manage the different 

forms of uncertainty.
» We do this by looking for robust policies, which are 

rules for making decisions.
» We write our optimization problem in the form:

» We refer to this as the base model which is typically 
calculated as a simulation:
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Lookahead policies
» Deterministic lookahead:

» Stochastic lookahead (e.g. stochastic trees)

Four classes of policies
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Lookahead policies

 Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The base model
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Lookahead policies
» Deterministic lookahead:

» Stochastic lookahead (e.g. stochastic trees)

Four classes of policies
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Stochastic lookahead policies

 The optimal policy requires solving
*
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Stochastic lookahead policies

 We use a series of approximations:
» Stage aggregation – Replacing multistage problems 

with two-stage approximations.
» Outcome aggregation/sampling – Simplifying the 

exogenous information process
» Discretization – Of time, states and decisions
» Horizon truncation – Replacing a longer horizon 

problem with a shorter horizon
» Dimensionality reduction – We may ignore some 

variables (such as forecasts) in the lookahead model 
that we capture in the base model (these become latent
variables in the lookahead model).
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Stochastic lookahead policies

 Stochastic lookahead
» Here, we approximate the information model by using a 

Monte Carlo sample to create a scenario tree: 
1am          2am          3am         4am         5am   …..

Change in wind speed

Change in wind speed

Change in wind speed



Stochastic lookahead policies

 We can then simulate this lookahead policy over 
time:
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Stochastic lookahead policies

 Multistage lookahead approximation
» The problem with multistage trees is that even with 

sparse sampling, they are too expensive to compute:
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Stochastic lookahead policies

 Two stage lookahead approximation
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Stochastic lookahead policies

 Creating wind scenarios (Scenario #1)
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Stochastic lookahead policies

 Creating wind scenarios (Scenario #2)
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Stochastic lookahead policies

 Creating wind scenarios (Scenario #3)
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Stochastic lookahead policies

 Creating wind scenarios (Scenario #4)
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Stochastic lookahead policies

 Creating wind scenarios (Scenario #5)
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Stochastic lookahead policies

 The two-stage approximation
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Stochastic lookahead policies
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Stochastic lookahead policies
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Stochastic lookahead policies
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Stochastic lookahead policies
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Stochastic lookahead policies

 The two-stage approximation
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Stochastic lookahead policies

 Observations
» As a general rule, we do not need a large number of 

scenarios to produce a robust policy.
» The problem here is that the day-ahead decision (steam 

generation) is a very high-dimensional vector.  We need 
to schedule steam generators:

• Across the grid (spatially)
• Over the entire day (temporally)

» Scenarios have to create robust behavior across space, 
and across time.

» It appears for this application, we may need a 
dramatically larger number of scenarios than is 
required in applications with lower-dimensional first 
stage decisions.
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Lookahead policies
» Deterministic lookahead:

» Stochastic lookahead (e.g. stochastic trees)

Four classes of policies
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 A deterministic lookahead model
» Optimize over all decisions at the same time

» These decisions need to made with different horizons
• Steam generation is made day-ahead
• Gas turbines can be planned an hour ahead or less

A hybrid lookahead-CFA policy

Steam generation Gas turbines
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 A stochastic lookahead model
» Optimize over all decisions at the same time

» These decisions need to made with different horizons
• Steam generation is made day-ahead
• Gas turbines can be planned an hour ahead or less

A hybrid lookahead-CFA policy
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 A robust lookahead-CFA policy
» We imbed a policy for fast-response adjustments within a 

lookahead model for planning steam:

• is determined at time t, to be implemented at time t’
• is determined at time t’ by the policy 

» The challenge now is to adaptively estimate the ramping 
constraints                         and the policies             .  
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Real-time adjustment of 
hydro and thermal plants.

is the type of policy. 
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SMART-ISO “Regions”
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 We then have to tune the parameters of this policy 
in our stochastic base model.

» The challenge now is to adaptively estimate the 
ramping constraints                         .  

Designing a policy
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SMART-ISO: Offshore wind study
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 Perspectives on robust policies
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Comparison of policies
 Robust cost function 

approximation
» Requires solving modified 

deterministic lookahead
model

» Parameters have to be 
tuned, ideally with a highly 
realistic base model
(“simulator”)

» User captures domain 
knowledge when specifying 
the structure of the CFA

 Stochastic lookahead

» Requires solving 
approximate stochastic 
lookahead model

» Tuning is generally not 
done (although in theory 
possible, but it is very 
expensive)

» No need for user-specified 
parametric approximation 
(and no ability to 
incorporate domain 
knowledge)
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Approximating distributions

 Stochastic lookahead model
» Uses approximation of the information process in the 

lookahead model

Parametric distribution (pdf) Nonparametric distribution (cdf)
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 2
21( )

2

x

f x e






  
 
 

( )f x ( )F x
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Approximating a function

 Parametric vs. nonparametric

» We can use our understanding of the function to impose 
a shape.

True function

Nonparametric fit
Observations
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 Parametric vs. nonparametric

» We can use our understanding of the function to impose 
a shape.

True function

Nonparametric fit

Parametric fit

Observations
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


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 

 A robust lookahead-CFA policy
» We imbed a policy for fast-response adjustments within a 

lookahead model for planning steam:

» It is easy to tune this policy when there are only two 
parameters                          

» But perhaps the ramping reserves should depend on other 
information?

Designing a policy

 ,up down  
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 A robust lookahead-CFA policy
» We imbed a policy for fast-response adjustments within a 

lookahead model for planning steam:

» The parameters might depend on a state variable that captures
• Weather forecast (esp. change in weather)
• Load forecast (indicates how close to capacity)

» Now the ramping parameters are functions.  
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Designing a policy
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Designing a policy

 How do we compare policies?
» Let’s agree on a base model (a simulator) and compare 

different policies!

where       represents a sample path capturing season, 
type of meteorology (stormy, calm), and stochastic 
variations around this base.

» Now compare
•

•

 
1 0

( ) ( ), ( ( ))
N T

n t n n
t t

n t

F p C S X S    
 

 



( )Robust CFA Robust CFAF  

( )Stoch LA Stoch LAF  
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Designing a policy
 So we have a choice:

» Stochastic lookahead model?
» Robust cost function approximation tuned on a stochastic base 

model (the “simulator”)?

 Stochastic lookahead model:
» Lookahead model introduces several approximations:

• Finite horizon, two-stages, limited scenarios, coarser temporal 
decomposition, unable to handle adaptive hedging

• Computationally very hard to solve
• Produces stochastic LMPs

» Robust cost function approximation
• Tuned using very realistic base model using parametric cost function 

approximation which captures domain knowledge.
• Computationally comparable to current models
• LMPs computed using existing practices.
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