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Main tasks of the Transmission System Operator (TSO): 

Decisions under uncertainty 

1. Ensure  ‘’N-1 security’’ 

N-1 security criterion: 
No operational limit violation 
after any single component 
outage 
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Generation active power capacity 

Up-regulating reserves 

Down-regulating reserves 

Operating point 

2. Maintain power balance 

..but an optimal and secure operation under uncertainty is a challenging problem! 

Optimal reserve capacity and 
allocation 

Main tasks of the Transmission System Operator (TSO): 

Decisions under uncertainty 

1. Ensure  ‘’N-1 security’’ 

N-1 security criterion: 
No operational limit violation 
after any single component 
outage 

Optimal component setpoints 
for preventive and corrective control 
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Decisions under uncertainty 

In the past: 
• Not heavily loaded system 
• Low share of Renewable Energy 

Sources (RES) 
 
 

Enough margin to 
withstand uncertainty 
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 Operating closer to the 
margins 
 

Maybe not possible to 
withstand uncertainty  
or  unnecessary expensive 
design 
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Objectives 

What is the probability that the system will be secure? 
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Objectives 

Find the optimal setpoints of the system                                
that guarantee security with certain confidence ! 

Probabilistic Optimal Power Flow formulations 
• N-1 Security 

• Reserve provision  

What is the probability that the system will be secure? 



1. Probabilistic DC based SC-OPF  
 

2. Probabilistic AC based SC-OPF 

 

3. Exploiting component controllability 

 

4.   Co-optimization of energy and reserves 
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1. Probabilistic DC based SC-OPF  

a) Problem set-up 

• DC power flow               linearized network equations 
• Uncertainty: wind power 
• Preventive control: generation dispatch 
• Security for the post-disturbance steady state operating point 

after the Secondary Frequency Control  
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1. Probabilistic DC based SC-OPF  

a) Problem set-up 

𝑃𝑃𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑃𝑃𝐺𝐺 − 𝑑𝑑 ∙ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 

𝑑𝑑: 

linear function of  and 

‘’distribution vector’’  
 

𝑃𝑃𝐺𝐺 𝑃𝑃𝑤𝑤 

Generation-load mismatch                      is compensated by the generators  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

• DC power flow               linearized network equations 
• Uncertainty: wind power 
• Preventive control: generation dispatch 
• Security for the post-disturbance steady state operating point 

after the Secondary Frequency Control 
 

𝑃𝑃𝑤𝑤 
𝑃𝑃𝐺𝐺 
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1. Probabilistic DC based SC-OPF  

b) Optimization problem 

Deterministic problem 
 

min
𝒙𝒙
𝐽𝐽(𝒙𝒙) 

 
 
𝐹𝐹𝑒𝑒𝑒𝑒𝒙𝒙 + 𝑓𝑓𝑒𝑒𝑒𝑒 + 𝐻𝐻𝑒𝑒𝑒𝑒𝜹𝜹𝒇𝒇 = 0  

     
𝐹𝐹𝒙𝒙 + 𝑓𝑓 + 𝐻𝐻𝜹𝜹𝒇𝒇 ≤ 0                       

𝒙𝒙 = 𝑃𝑃𝐺𝐺 Decision variables: 
 𝜹𝜹 = 𝑃𝑃𝑤𝑤 Uncertain variables: 
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min
𝒙𝒙
𝐽𝐽(𝒙𝒙) 
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Trade-off between  
security and cost: 
 

𝜀𝜀 ∈ 0,1  



1. Probabilistic DC based SC-OPF  

c) Dealing with the chance constraint 

Probabilistically robust design [1]  

• Mixture of randomized and robust optimization 

• No  assumptions on the underlying distribution of the uncertainty 

• Guarantees that the chance constraint will be satisfied with a certain 
confidence 

 
 
Other methods used in the thesis 

• The scenario approach [2] 

• Trading feasibility to optimality - Sampling and discarding [3] 
 
 

[1] Margellos, Goulart, Lygeros, Trans. Aut. Con 2013. 
[2]  Calafiore, Campi,  Trans. Aut. Con., 2006 
[3]  Campi , Garatti,  Journal of  Optimization Theory and Applications, 2011. 
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1. Probabilistic DC based SC-OPF  

c) Dealing with the chance constraint 

• Use the scenario approach  to find ‘bounds‘ of the 
uncertainty elements 

• How many scenarios do we need to provide probabilistic 
guarantees? 

Step 1 
      

number of  
uncertainty   
elements 

confidence 
violation  
level 

number  
of scenarios 

Probabilistically robust design (two-step approach) [1] 

𝑁𝑁 ≥ 1
𝜀𝜀

𝑒𝑒
𝑒𝑒−1

 ln 1
𝛽𝛽

+ 2𝑁𝑁𝛿𝛿 − 1  
𝛿𝛿1 

𝛿𝛿2 

12 [1] Margellos, Goulart, Lygeros, Trans. Aut. Con 2013. 
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1. Probabilistic DC based SC-OPF  

c) Dealing with the chance constraint 

Step 2 
      

Probabilistically robust design (two-step approach) [1] 

 

• Solve a robust formulation of the initial 
chance constrained problem 

 
• Any  solution of the robust problem is 

feasible for the chance constrained with 
confidence at least  

(𝐹𝐹𝒙𝒙 + 𝑓𝑓 + 𝐻𝐻𝜹𝜹 ≤  0) ≤ 1 − 𝜀𝜀 

for all 𝜹𝜹 ∈ ∆𝑁𝑁 𝐹𝐹𝒙𝒙 + 𝑓𝑓 + 𝐻𝐻𝜹𝜹 ≤  0 

𝛿𝛿1 

𝛿𝛿2 

∆𝑁𝑁 

1 − 𝛽𝛽 

12 [1] Margellos, Goulart, Lygeros, Trans. Aut. Con 2013. 



1. Probabilistic DC based SC-OPF  

d) Case study 
 

 IEEE 30-bus network 
 4 load profiles  

 
 Desired violation level 10%   

Probabilistic set-up 

Deterministic set-up 

theoretical  
violation level 
(10%) 
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 Monte Carlo evaluation for 10000 wind power 
realizations     

Probability of insecure cases 

Fails to satisfy the 
desired violation level 

Satisfy the            
desired violation level 



1. Probabilistic DC based SC-OPF  

d) Case study 

 Trade-off between 
security and cost 

Probabilistic dispatch 

Deterministic dispatch 

theoretical  
violation level 
(10%) 

Co
st

 

85%               90%              95%             99%        
Probability  level to be secure 1 − 𝜀𝜀 

 (30.7%  empirical 
violation probability) 

Deterministic 
se-tup  
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Probabilistic set-up 



1. Probabilistic DC based SC-OPF  
 

2. Probabilistic AC based SC-OPF 

 

3. Exploiting component controllability 

 

2. Co-optimization of energy and reserves 

 
 
 

Outline 
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a) Problem set-up 

• AC power flow               non-convex network equations 

• Uncertainty: wind power 

• Security for the post-disturbance steady state operating point 
after the Secondary Frequency Control (or AGC) 

• Preventive control: generation dispatch 

• Corrective control:  Automatic Voltage Regulation (AVR) set-point 

 

 

 
 

𝑃𝑃𝑤𝑤 

2.   Probabilistic AC based SC-OPF  
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b) Add-ons to AC OPF 

AC OPF convex 
relaxation [4] 

[4]  Lavaei, Low, Transactions on Power Systems 2012 

Uncertainty N-1 security 
constraints 

Policy for the Post-disturbance AVR setpoint 
•     Typically the AVR setpoint is  constant. 
•     Indroduce a policy as a function of  uncertainty 

 
 

•     Optimize over the coefficients of this policy: 𝐴𝐴𝑖𝑖, 𝐵𝐵𝑖𝑖   

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑃𝑃𝑤𝑤 

2.   Probabilistic AC based SC-OPF  

Policy for 
AVR 

2 
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c) Problem formulation 

2.   Probabilistic AC based SC-OPF  

18 

We use the convex OPF reformulation proposed in [4]  
      min

𝑊𝑊
𝐽𝐽(𝑊𝑊) 

 
 
         𝑓𝑓 𝑊𝑊 ≤  0  
         𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑊𝑊 = 1                       

subject to 

𝑓𝑓(∙) where 
• active and reactive power production    
• active and apparent power flow   
• voltage magnitude  
• magnitude of the voltage difference between two neighboring buses 

represents the power balance equations and typical limits on 

Note:            includes semidefinite constraints! 𝑓𝑓(∙)   

and                           with       consisting of the real and imaginary part of the bus voltages 𝑊𝑊 = 𝑋𝑋𝑋𝑋𝑇𝑇 𝑋𝑋 

[4]  Lavaei, Low, Transactions on Power Systems 2012 
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We use the convex OPF reformulation proposed in [4]      

min
𝑊𝑊

𝐽𝐽(𝑊𝑊) 
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sets the bus that 
corresponds to k as 
the reference bus 
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c) Problem formulation 

[4]  Lavaei, Low, Transactions on Power Systems 2012 



2.   Probabilistic AC based SC-OPF  

19 

      

min
𝑊𝑊

𝐽𝐽(𝑊𝑊0) 
 
 
𝑓𝑓𝑖𝑖 𝑊𝑊𝑖𝑖 ≤ 0 
 

𝑊𝑊𝑖𝑖 𝑘𝑘, 𝑘𝑘 = 0  
 

𝑔𝑔𝑖𝑖 𝑊𝑊𝑖𝑖 =  𝑔𝑔0 𝑊𝑊0 − 𝑑𝑑 ∙ 𝑝𝑝(𝑊𝑊0) 
 

    𝑖𝑖 = 0, … ,𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 

subject to 

for all 

 AVR corrective action   
 

 different          for each contigency 𝑊𝑊𝑖𝑖  

number of possible single outages no outage case 

𝑃𝑃𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑃𝑃𝐺𝐺 − 𝑑𝑑 ∙ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 AGC action 
   

Augment the convex OPF reformulation to include security constraints 
      

c) Problem formulation 



2.   Probabilistic AC based SC-OPF  

20 

Augment the SC-OPF to include the uncertainty 
      

min
𝑊𝑊

𝐽𝐽(𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤,𝑓𝑓 ) 
 
 
𝑓𝑓𝑖𝑖 𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 ≤ 0 
 

𝑊𝑊𝑖𝑖 𝑘𝑘, 𝑘𝑘 = 0  
 

𝑔𝑔𝑖𝑖 𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 =  𝑔𝑔0 𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤,𝑓𝑓 − 𝑑𝑑 ∙ 𝑝𝑝(𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 ) 
 

              𝑖𝑖 = 0, … ,𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 

subject to 

for all 

𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 = 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑃𝑃𝑤𝑤 

( 

) ≥  1 − 𝜀𝜀 

𝑊𝑊𝑖𝑖  

 Optimization over functions ?       

+ deterministic constraints for  𝑃𝑃𝑤𝑤 = 𝑃𝑃𝑤𝑤,𝑓𝑓 violation level violation level 

c) Problem formulation 
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subject to 

for all 

( 

) ≥  1 − 𝜀𝜀 

𝑊𝑊𝑖𝑖  

 Optimization over functions ?       

+ deterministic constraints for  𝑃𝑃𝑤𝑤 = 𝑃𝑃𝑤𝑤,𝑓𝑓 violation level violation level 

• typically intractable! 
• To acieve tractability  we select          to 
      be an affine function of the uncertainty:   
 

𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 = 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑃𝑃𝑤𝑤 

c) Problem formulation 
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Augment the SC-OPF to include the uncertainty 
      

min
𝑊𝑊

𝐽𝐽(𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤,𝑓𝑓 ) 
 
 
𝑓𝑓𝑖𝑖 𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 ≤ 0 
 

𝑊𝑊𝑖𝑖 𝑘𝑘, 𝑘𝑘 = 0  
 

𝑔𝑔𝑖𝑖 𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 =  𝑔𝑔0 𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤,𝑓𝑓 − 𝑑𝑑 ∙ 𝑝𝑝(𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 ) 
 

              𝑖𝑖 = 0, … ,𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 

subject to 

for all 

( 

) ≥  1 − 𝜀𝜀 

𝑊𝑊𝑖𝑖  

 Optimization over functions ?       

+ deterministic constraints for  𝑃𝑃𝑤𝑤 = 𝑃𝑃𝑤𝑤,𝑓𝑓 

Practically: AVR function of 
                     the uncertainty 

• typically intractable! 
• To acieve tractability  we select          to 
      be an affine function of the uncertainty:   
 

𝑊𝑊𝑖𝑖 𝑃𝑃𝑤𝑤 = 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑃𝑃𝑤𝑤 

c) Problem formulation 



theoretical  violation level (10%) 

d) Case study 

 
 
 

Empirical probability of constraint 
violation 

DC set-up:   fails to satisfy the                   
     violation level 
 
AC set-up :  satisfy the violation  
     level 

 
 IEEE 14-bus network 
 
 Monte Carlo evaluation  
       for 10000 wind power  
       realizations 

2.   Probabilistic AC based SC-OPF  

21 

Load profile  (MVA) 

Probability of insecure cases 

DC set-up: Poor representation of  the real AC model 



d) Case study 

2.   Probabilistic AC based SC-OPF  
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Line loadings for N-1 cases and 10000 wind power scenarios 
 

DC set-up 

AC set-up 



1. Probabilistic DC based SC-OPF  
 

2. Probabilistic AC based SC-OPF 

 

3. Exploiting component controllability 

 

2. Co-optimization of energy and reserves 

 
 
 

Outline 



3. Exploiting component controllability 
 

a) Operational costs 
cost 
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3. Exploiting component controllability 
 

a) Operational costs 
cost 

Including security constraints increases the costs 
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3. Exploiting component controllability 
 

a) Operational costs 
cost 

Including security constraints increases the costs 

Probabilistic robustness increases the cost as well 
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3. Exploiting component controllability 
 

a) Operational costs  - OPF 
cost 

Decrease cost by exploiting controllability of 
certain componets (e.g. AVR, HVDC, Loads) 

Model their post-disturbance set-point as a 
function of the uncertainty (e.g. affine policies) 

23 



3. Exploiting component controllability 
 

a) Case study  

24 

         Corrective control action of the AVR setpoint 
 

• Reduce the operational cost 
• Enables higher wind penetration 



3. Exploiting component controllability 
 

a) Case studies 

Using HVDC + load controllability reduced the costs 
due to uncertainty to 50% 
 
 

25 [Vrakopoulou,  Chatzivasileiadis, Iggland, Imhof, Krause,  Mäkelä, 
Mathieu, Roald, Wiget, Andersson, IREP 2013] 

 
 



1. Probabilistic DC based SC-OPF  
 

2. Probabilistic AC based SC-OPF 

 

3. Exploiting component controllability 

 

4. Co-optimization of energy and reserves 

 
 
 

Outline 



a) Reserve representation (Secondary frequency control) 
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Up to now… 
    

considered to be constant 
 

𝑑𝑑: 
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a) Reserve representation (Secondary frequency control) 

Move to optimal mismatch distribution 
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Up to now… 
    ‘’ Power correction term       ’’ 𝑅𝑅 

considered to be constant 
 

𝑑𝑑: 

Treat them as decision variables 𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑢𝑢𝑢𝑢: 

𝑅𝑅 = �
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Up to now… 
    ‘’ Power correction term       ’’ 𝑅𝑅 

considered to be constant 𝑑𝑑: 

Move to optimal mismatch distribution 
 

Treat them as decision variables 𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑢𝑢𝑢𝑢: 

a) Reserve representation (Secondary frequency control) 

𝑅𝑅 = �
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a) Reserve representation (Secondary frequency control) 
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𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑢𝑢𝑢𝑢 

Reserves strategy for real time deployment 
• Piece-wise function of the uncertainty with coefficient  
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• Worst-case (probabilistically) values of        incorporating  𝑅𝑅 

 
   

a) Reserve representation (Secondary frequency control) 

𝑅𝑅 = �
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What happens in case of outages ? 
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Reserves strategy for real time deployment 
• Piece-wise function of the uncertainty with coefficient  

Amount of reserves to be purchased 
• Worst-case (probabilistically) values of        incorporating  𝑅𝑅 

a) Reserve representation (Secondary frequency control) 

𝑅𝑅 = �
 𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  
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What happens in case of outages ? 
• Introduce different distribution vector per outage 
• The mismatch depends on          so bilinear terms appear! 
• We proposed two solutions 

𝑃𝑃𝐺𝐺 

Heuristic iterative algorithm 
Convex reformulation 

𝑖𝑖 

𝑖𝑖 𝑖𝑖 
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Results for 1 day 
Evaluation over the ‘‘actual’’ wind power realization 
 

No N-1 insecure instance was encountered 

4.   Co-optimization of energy and reserves   
        
 b) Case study  



Randomized algorithm Quantile based approach 

in probability of load shedding:  94% 
in probability of wind spillage:  92% 
in wind spillage:  88% 
in load shedding:  36%  

Probability of 
load shedding 

Probability of 
wind spillage 

Load shedding 
(MW) 

Wind spillage 
(MW) 

Mean reduction per hour for Randomized algorithm 

With maximum 1%  increase in scheduling costs 

29 



Randomized algorithm   (grey lines) 
Criterion-based method for reduced number of scenarios (dark blue lines) 

Wind power (MW)  scenarios  
(grey shadow: span of the scenarios for the randomized algorithm) 

Probability of violation 

Theoretical  violation level 

The randomized algorithm 
results in 9% lower total 
scheduling costs than the 
criterion-based method 

 
 
 
The criterion based method , 
though more expensive, fails to 
satisfy the violation level at the 
second hour 

time (hours) [Panagou, ETH Zurich, Master thesis 2013] 30 



Developed a probabilistic framework for optimal decision making in the  
presence of uncertainty  
• A-priori guaranteed performance  
• Exploiting the trade-off between robust and economical operation 

 
        Probabilistic DC and  AC power flow set-up  
 
        Exploit component controllability  

• Determined a strategy for their post-disturbance operating point as 
functions of the uncertainty  

• Achieve more economic performance, allow more wind integration       
 
Constructed a mechanism for reserve provision 
• Determined the minimum cost amount of reserves 
• Determined a reserve strategy for real time deployment 

 
 
 

 
 
 

Summary 



Extensions 

• Unit commitment  
• Reserve strategy 
[Margellos, Rostampour, Vrakopoulou,  Prandini, Andersson, Lygeros, ECC 2013] 

• Unit commitment  
• Reserve strategy 
• N-1 security 
• Non-spinning reserves 
[Hreinsson, Vrakopoulou, Andersson,  PSCC 2014] 

• Reserve strategy 
• Reserves from Demand Response 
[Vrakopoulou, Mathieu, Andersson,  HICSS 2014] 

• N-1 security 
• Risk based constraints 
[Roald, Vrakopoulou, Oldewurtel, Andersson,  PSCC 2014] 

• N-1 security 
• Reserve strategy 
[Vrakopoulou, Margellos, Lygeros, Andersson,  
PMAPS 2012, EnergyCon 2012 
Transcacions of Power Systems 2013] 
 

This presentation mostly 
based on:  

Some extensions up to now: 

• N-1 security 
• AC OPF 
[Vrakopoulou, Katsampani, Margellos, Lygeros, 
Andersson, PowerTech 2013] 



Thank you for your attention! 
 
contact: mariavr@umich.edu 
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o   Motivation 
o   Objective 
o   Unified  problem  formulation 
o   Proposed  solutions  to  ensure  tractability 
o   Case study 
o   Remarks and future work 

      Real time strategy 

Implementation 
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