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How can loads provide reserves?
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Thousands of coordinated thermal loads can
track signals

- Air conditioners, heat pumps, space heaters, electric water heaters, refrigerators

All information known to controller
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Thousands of coordinated thermal loads can
track signals

- Air conditioners, heat pumps, space heaters, electric water heaters, refrigerators
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Direct load control
for fast, reliable
power system
service provision
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Direct load control
for fast, reliable
power system
service provision

= Distributed!
—>Accurate?
—>Cheap?

=2 Green?

J. Mathieu, UMich

System
Operator

aggregator

contract >
direct

control
signals

V



“But load control will never be reliable
enough to provide trustworthy reserves!”
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“But load control will never be reliable
enough to provide trustworthy reserves!”

e Why?
— Too much uncertainty: People! Weather! etc.
* Two options:

— Be conservative in how much reserve you
schedule

— Explicitly consider reserve uncertainty in the
planning algorithm
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Stochastic optimal power flow
Preliminary results
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Outline

* Modeling reserves from loads
* Understanding uncertainty

* Stochastic optimal power flow
* Preliminary results

* New directions

Largely based on: Vrakopoulou, Mathieu, Andersson, “Stochastic Optimal Power Flow
with Reserves From Demand Response.” Proceedings of the Hawaii International
Conference on Systems Science, 2014.



Time-varying
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Time-varying
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Time-varying
“thermal battery” model

baseline

power

>
time — 1 day

S(k -+ 1) = S(k) -+ (P(k) — Pbaseline(k))AT

Mean power over an interval

Pmin(k> < P<k> < Pmax('lf)

A charging A
> discharging s
2 2
o )
o o
> >
time — 1 day time — 1 day
/Pmax(k)
A

3] Pmin<k)

2

o)

o

>
time — 1 day

[Mathieu, Kamgarpour, Lygeros, & Callaway ECC 2013] J. Mathieu, UMich



Time-varying
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What are the power and energy
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Time-varying power & energy capacities

1000 electric space heaters
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Time-varying power & energy capacities
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Time-varying power & energy capacities
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What if we try to hold a fixed trajectory?
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What if we try to hold a fixed trajectory?

— The power capacity is actually a function of
external forcing!
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Handling reserve uncertainty within a dc
optimal power flow (DC-OPF) formulation

* Decision variables:
— Generation set points & reserve levels

— Load set points & reserve levels €< given that load flexibility is
uncertain!
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Handling reserve uncertainty within a dc
optimal power flow (DC-OPF) formulation

* Decision variables:
— Generation set points & reserve levels

— Load set points & reserve levels €< given that load flexibility is
uncertain!

* Objective: Minimize cost of energy generation and reserves
subject to generator, load, and power system constraints

N
[6)]

* Uncertainty: T s

— Wind power ;

— Qutdoor temperature
—Load uncertainty

—> DR uncertainty
—>Reserve uncertainty
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Reserve Modeling

* Secondary frequency control (AGC) provided by
loads and generators

— Assumes loads are cheaper!



Reserve Modeling

* Secondary frequency control (AGC) provided by
loads and generators

— Assumes loads are cheaper!

e Re-dispatch (15-minute market, Tertiary control)
provided by generators

— Covers power mismatch between expected and actual
generation (as it does today)

— Provides energy to return loads to their scheduled
energy state (like CAISO’s Regulation Energy
Management)!



Solution Approach

e Chance-constrained OPF

* Solved with probabilistically robust design
[Margellos, Goulart, and Lygeros 2012], inspired by a
scenario-based technique [Calafiore and Campi 2006]

* Probabilistic guarantees



Solution Approach

Chance-constrained OPF

Solved with probabilistically robust design
[Margellos, Goulart, and Lygeros 2012], inspired by a
scenario-based technique [Calafiore and Campi 2006]

Probabilistic guarantees

More details this afternoon...

“Quantifying the Trade-off Between Secure and
Economic Operation of Power Systems Under
Uncertainty” — Maria Vrakopoulou
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Operational costs

====++=== no load uncertainty, no control
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Operational costs

""""" no load uncertainty, no control
----- uncertain load, no control
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Operational costs
fStOChaSﬁc
""""" no load uncertainty, no control or"'"'U/all‘ion DR
----- uncertain load, no control *
— uncertain load, control
600 - i

500

400

300 .

Total cost

200 N

T

100 .

0 | I | I | I | I | 1 |
0 2 4 6 8 10 12 14 16 18 20 22 24

time (hours)

J. Ividailiiceu, viviicli




Probability of constraint violation (%)
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Key Takeaway

Reserves from loads may not be of the
same “quality” as those provided by
generators, BUT we can plan for load
uncertainty by explicitly considering it in
our problem formulation



New directions...

 How do uncertainty and reserve costs interact?

 How can we handle the full complexity of load
control uncertainty?

— Multi-dimensional
— Exogenous and endogenous
— Non-stationary
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New directions...

 How do uncertainty and reserve costs interact?

 How can we handle the full complexity of load
control uncertainty?

— Multi-dimensional

— Exogenous and endogenous
— Non-stationary

— Insufficient data!

Scenario-based
approaches
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