Wind Dispatch Using Do-not-Exceed Limit

FERC Technical Conference on Increasing Market and Planning Efficiency Through Improved Software

June 23, 2014

Tongxin Zheng, Eugene Litvinov, and Jinye Zhao
Outline

• Motivation
• Current Practice and Issues
• The Proposed Wind Dispatch Process
• DNE Problem and Solution Method
• Numerical Example
• Conclusion
Motivation

• More wind resources are being integrated into the system operation.

• Different from conventional generators, wind resources are
 – Variable
 • Increased level of uncertainty in the real-time operation
 – Non-dispatchable
 • Wind generation can be only curtailed when reliability issues arise
 – Low operating cost
 • Negative marginal cost

• How do we better utilize the low cost wind resources recognizing their variability?
Existing Real-time Wind Dispatch Practice

- **Manual Dispatch**
 - Fixed at SCADA values
 - Do not set real-time prices
 - Curtailment through phone calls in the event of transmission violation
 - No enforcement of performance penalty

- **Automatic Dispatch**
 - Expected output forecasted by the system operator or participants
 - Dispatch between 0 and the expected output
 - Utilize economic offers in the dispatch and pricing
 - Automatic curtailment as long as basepoint < expected output
 - Electronic dispatch with basepoint and/or curtailment flag
 - Allow a wider deviation range when no curtailment is activated
Issues with Existing Practice

• The dispatch signal does not provide a clear guideline of dispatch following for wind resources.
 – They do not know whether additional wind generation beyond the basepoint will cause any reliability problem.

• The curtailment action is ex post and may not be efficient.
 – Manual Curtailment
 • Is implemented when system already experiencing security problem.
 – Automatic Curtailment
 • Does not differentiate economic-based from reliability-based curtailments
The Proposal: Do not Exceed (DNE) Limit

• Send a do-not-exceed limit to each wind unit
 – Do-not-exceed limit = Reliability limit

• The DNE limit is the maximum amount of wind generation that system can accommodate without causing any reliability issues.
 – Reliability: Capacity and Transmission
 – Uncertainty: Any realization

• Benefits of DNE limit:
 – Provide a dispatch guideline for wind resources
 – Provide incentives for dispatch following
 • Units exceeding their DNE limits are subject to penalty
 – Allow low cost wind resource to provide as much energy as possible
Real-time Wind Dispatch Framework

Wind CA

Transmission Constraints

RT Dispatch

DDP

DNE Limit Calculation

DNE Limit

DDP for non-wind resource

Forecast

Market & Network

CA – Contingency Analysis
ED - Electronic Dispatch System
DDP – Desired Dispatch Point
DNE – Do-not-Exceed Limit
Wind CA

- N-1 Contingency Analysis
 - Loss of line
 - Loss of generator

- Enhancement with wind dispatch
 - Security under expected wind generation
 - Contingency analysis with expected wind output scenario
 - Constraints are generated for the economic dispatch
 - Security under extreme wind realization
 - Zonal basis
 - Loss of wind resource
 - Extreme wind generation
 - Constraints are generated for the DNE limit calculation
Real-time Dispatch

- Market participants submit
 - Real-time high operating limit
 - Generation forecast
 - Meteorology data
 - Outage information

- ISO forecasts the expected output of each wind resource.

- In the dispatch, each wind unit is
 - Dispatchable (allowed for price setting)
 - Dispatched between 0 and its expected output level
 - Dispatched against its energy offer
DNE Limit Calculation

• Produce the reliability limit for each wind resources by taking account system control actions.

• DNE Limit Problem Formulation
 – An optimization problem to find the minimum and maximum output level of a wind resource while satisfying the following conditions:
 • System is able to maintain energy balance under any output variation of wind resources by adopting a set of control actions,
 • The flow on any transmission line remains within its limit under any realization of uncertain output level of wind resources,
 • The corrective control action must be subject to its corresponding physical limits,
 • The output variation of a wind resource should be within its physical limits.
Not a Standard Robust Optimization Problem

• A standard two-stage robust optimization problem:
 \[
 \min_{x, p(\bullet)} \left(c^T x + \max_{w \in [w_{LB}, w_{UB}]} g(p(w)) \right) \\
 \text{s.t. } Ax + Bp(w) + Dw \leq h, \forall w \in [w_{LB}, w_{UB}] \\
 x \in X \\
 \text{– Determine the best control decision } x \text{ to accommodate the worst case} \\
 \text{– The uncertainty set is pre-defined}
 \]

• DNE limit problem:
 \[
 \min_{p(\bullet), w_{LB}, w_{UB}} f(w_{LB}, w_{UB}) \\
 \text{s.t. } Ax^* + Bp(w) + Dw \leq h, \forall w \in [w_{LB}, w_{UB}] \\
 (w_{LB}, w_{UB}) \in \mathcal{W} \\
 \text{– Determine the largest uncertainty range that a system can accommodate} \\
 \text{– The uncertainty set is to be determined}
Solution Strategies

• The DNE Limit problem can be considered as a reverse of an adaptive robust optimization problem, which is difficult to solve in general.

• Approximation can be made to the adaptive/corrective actions to reduce the complexity of the solution method.

• Three approximation strategies
 – Affine policy with fixed participation factor
 – Affine policy with optimal participation factor
 – Fully adaptive strategy
Affine Policy

• Assume that the output of a corrective action unit changes linearly with respect to the uncertainty realization

\[p_j(w) = p_j^* + E_j \cdot (w - w^*) \]

Participation vector

• Substitution and Dualize the robust constraint

\[
\begin{align*}
&\min_{p^*(\cdot), w^{LB}, w^{UB}} f(w^{LB}, w^{UB}) \\
&\text{s.t. } Ax^* + Bp(w) + Dw \leq h, \forall w \in [w^{LB}, w^{UB}] \\
&(w^{LB}, w^{UB}) \in \mathcal{W}
\end{align*}
\]

\[
\begin{align*}
&\min_{w^{LB}, w^{UB}, E, \alpha} f(w^{LB}, w^{UB}) \\
&\text{s.t. } (Ax^* + Bp^* - BEw^*) + \alpha^+ w^{UB} - \alpha^- w^{LB} \leq h \\
&\alpha^+ - \alpha^- = (D - BE)^T \\
&(w^{LB}, w^{UB}) \in \mathcal{W}
\end{align*}
\]
Affine Policy

- Affine policy with fixed participation factors
 - The participation vector \(E \) can be fixed based on engineering experience.
 - \(\alpha^- \) and \(\alpha^+ \) can be predetermined

 \[
 \{\alpha^-\}_{j,k} = \min((D - BE)_{j,k}, 0) \quad \{\alpha^+\}_{j,k} = \max((D - BE)_{j,k}, 0)
 \]

 - The corresponding problem is an LP problem

- Affine policy with optimal participation factors
 - Participation vector \(E \) is a decision variable
 - \(\alpha^- \) and \(\alpha^+ \) are variables too
 - DNE problem is a bilinear problem
Fully Adaptive Strategy

- For any w_k in the interval $[w_k^{LB}, w_k^{UB}]$, it can be expressed as follows:
 \[w_k = z_k w_k^{LB} + (1 - z_k) w_k^{UB}, \forall z_k \in [0,1] \]

- Reformulation: two-stage adaptive robust optimization problem

\[
\begin{align*}
\min_{p(\bullet), w^{LB}, w^{UB}} & \quad f(w^{LB}, w^{UB}) \\
\text{s.t.} & \quad Ax^* + Bp(w) + Dw \leq h, \forall w \in [w^{LB}, w^{UB}] \\
& \quad (w^{LB}, w^{UB}) \in \mathcal{W} \\
\end{align*}
\]

\[w = Zw^{LB} + (I - Z)w^{UB}, Z \in [0, I] \]

\[
\begin{align*}
\min_{p(\bullet), w^{LB}, w^{UB}} & \quad f(w^{LB}, w^{UB}) \\
\text{s.t.} & \quad Ax^* + Bp(z) + DZw^{LB} + D(I - Z)w^{UB} \leq h, \forall Z \in [0, I] \\
& \quad (w^{LB}, w^{UB}) \in \mathcal{W} \\
\end{align*}
\]
Comparison of Three Solution Strategies

Solution Methodologies:

- Fully adaptive strategy
 - Two-stage adaptive robust problem (Benders’ decomposition)
- Affine policy with optimal participation factor
 - Bilinear Problem (NLP)
- Affine policy with fixed participation factor
 - LP Problem (CPLEX)

Less conservative (or larger DNE Limits)

Easier to implement
5-Bus Examples

- Generator Information

<table>
<thead>
<tr>
<th>Resources</th>
<th>Type</th>
<th>Location</th>
<th>Bid ($/MWh)</th>
<th>Dispatch Min (MW)</th>
<th>Dispatch Max (MW)</th>
<th>Physical Min (MW)</th>
<th>Physical Max (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen0</td>
<td>Wind</td>
<td>Bus0</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Gen1</td>
<td>AGC</td>
<td>Bus1</td>
<td>10</td>
<td>40</td>
<td>100</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Gen2</td>
<td>Conventional</td>
<td>Bus2</td>
<td>15</td>
<td>50</td>
<td>100</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Gen3</td>
<td>Wind</td>
<td>Bus3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Gen4</td>
<td>AGC</td>
<td>Bus4</td>
<td>20</td>
<td>120</td>
<td>150</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Load1</td>
<td>Fixed</td>
<td>Bus1</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load2</td>
<td>Fixed</td>
<td>Bus2</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load3</td>
<td>Fixed</td>
<td>Bus3</td>
<td>60</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load4</td>
<td>Fixed</td>
<td>Bus4</td>
<td>200</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only AGC units are assumed to perform corrective control in the example.
Transmission flow limit for each line is 100 MW.
5-Bus Example: DNE Limits

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Gen0 (DNE Limit)</th>
<th>Gen1 (e)</th>
<th>Gen2 (DDP)</th>
<th>Gen3 (DNE Limit)</th>
<th>Gen4 (e)</th>
<th>Total Range of DNE Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affine (fixed e)</td>
<td>[58.3~100]</td>
<td>0.4</td>
<td>50 MW</td>
<td>[71.7~113.3]</td>
<td>0.6</td>
<td>83.3 MW</td>
</tr>
<tr>
<td>Affine (optimal e)</td>
<td>[24~100]</td>
<td>0.714</td>
<td>50 MW</td>
<td>[100~150]</td>
<td>0.286</td>
<td>126 MW</td>
</tr>
<tr>
<td>Fully adaptive</td>
<td>[80~100]</td>
<td>N/A</td>
<td>50 MW</td>
<td>[30~150]</td>
<td>N/A</td>
<td>140 MW</td>
</tr>
</tbody>
</table>

- Fully adaptive approach results in the largest total DNE limit range
- Affine policy approach with fixed participation factor results in the smallest total DNE limit range
- The fixed participation factor can be very different from the optimal counterpart.
ISO New England System Example

- Jun 1st, 2011 Data
 - 6 wind generators with total capacity of 250 MW
 - 1~3 AGC units with regulation capability of 20~140 MW

- Two affine approaches yield the same results
- The advantage of the adaptive approach is not significant
Conclusion

• A wind dispatch framework using the DNE limit is proposed.

• The proposed dispatch framework
 – Provides a more clear dispatch guideline for wind resources
 – Provides better incentives for dispatch following
 – Accommodates more low cost wind generation

• A systematic way of determining the DNE limits for wind power resources is proposed based on the robust optimization technique.

• Three solution strategies are investigated.
 – The fixed participation factor affine policy approach is more suitable for the real-time operation.
Questions