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Motivation 
 A problem from power systems: Simultaneous 

auctions in ISO day-ahead markets are used to 
commit units to satisfy bidding demand and reserve 
requirements   

 Such auctions and many other practical problems are 
modeled as mixed-integer programming problems 
which are computationally intensive 
 Unit commitment is complicated by both system-wide and 

individual unit constraints 
 Unit commitment is further complicated when extended to 

incorporate uncertainties introduced by renewable resources 
 Payment cost minimization is very complicated since the 

objective function involves cross-products of decision 
variables and constraints defining prices are global 

 To solve these problems, Lagrangian relaxation and 
branch-and-cut have been used 
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Standard Lagrangian Relaxation 
 Lagrangian relaxation has been powerful for solving 

separable mixed-integer programming problems by 
introducing Lagrange multipliers 
 Relaxed problem can be decomposed into subproblems  
 Multipliers are updated based on levels of constraint violations 

 The subgradient method, the most widely used 
method to update multipliers, can suffer from slow 
convergence 
 The relaxed problem is difficult to fully optimize (NP-hard, 

non-separable) 
 The method can suffer from zigzagging of multipliers   
 Convergence does not require the optimal dual value q* 

 How to solve problems efficiently and guarantee 
convergence without requiring q*? ~ an open issue 
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Standard Branch-and-Cut 
 Branch-and-cut has been a powerful method to solve 

linear mixed-integer programming problems when 
 Strong cuts are used 
 Branch-and-cut tree is reasonably small 

 The method can suffer from slow convergence 
because  
 Strong globally valid cuts can be problem-dependent 
 Other cuts (e.g., Gomory cuts) can suffer from infinite 

convergence 
 When strong cuts are not available, branching can lead to a 

large number of branching operations    

 Difficulty: Complicated global and local constraints can 
pose challenges when strong cuts are unavailable  
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In This Talk 

 Development of novel surrogate Lagrangian relaxation 
to guarantee convergence without fully optimizing the 
relaxed problem and without requiring q* 

 Innovative synergy of surrogate Lagrangian relaxation 
and branch-and-cut 

 Applications for solving mixed-integer programming 
problems with complicated constraints prevalent in 
ISO day-ahead markets 
 Multi-stage combined cycle units 
 Payment cost minimization  
 Stochastic unit commitment 

 Conclusions 
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Surrogate Subgradient Method 

 To overcome difficulties of the subgradient method, 
the Lagrangian relaxation and surrogate subgradient 
method (Zhao et al, 1999) has been introduced 

 To reduce computational effort, the relaxed problem is 
approximately optimized subject to the surrogate 
optimality condition  

 Surrogate subgradient directions form small acute 
angles toward λ*, thereby alleviating zigzagging and 
reducing the number of iterations required for 
convergence 

 Convergence was proved by using q* 

 Reference: Zhao, X., Luh, P. B., and Wang, J.: Surrogate Gradient Algorithm for 
Lagrangian Relaxation. Journal of Optimization Theory and Applications 100 (3), 
699-712 (1999) 



Innovative Surrogate Lagrangian Relaxation 
 Main Contribution: Develop a new method, prove and 

guarantee convergence  
 Without fully optimizing the relaxed problem  
 Without requiring q* 

 Main Idea 1: Decrease distances between multipliers 
at successive iterations (||λk+1–λk|| decreases)  

 

 

 

 

 ||λk+1–λk|| decreases ⇒ fixed-point mapping ⇒    
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Innovative Surrogate Lagrangian Relaxation 

                                                                                     (1) 

 Parameters αk should satisfy 

 If αk are small, ck
 → 0 too fast ⇒ premature convergence  

 Main Idea 2:  
 To avoid premature convergence, stepsizes (ck

 → 0) should be 
kept sufficiently large 

 To ensure that, stepsize setting parameters αk should converge 
to 1 faster than ck

 → 0 
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Main Theorem 
 Multipliers converge to the optimum λ* without requiring 

q* provided αk satisfy: 

 1)       (Main idea 1) 

 2)                    (Main idea 2) 

 One possible example of αk that satisfy conditions 1) 

and 2):  

 At convergence, the surrogate dual value approaches 
the (optimal) dual value q* ~ valid lower bound on the 
feasible cost 
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Synergistic Combination with Branch-and-cut 
 To overcome difficulties of existing methods, 

surrogate Lagrangian relaxation and branch-and-cut 
can be synergistically combined by approximately 
optimizing the relaxed problem using branch-and-cut 
subject to the surrogate optimality condition  

 The synergistic combination is efficient and 
implementable in practice since it makes the best use 
of problem structures 

 Surrogate Lagrangian relaxation exploits separability and 
local characteristics by relaxing global constraints 

 Branch-and-cut exploits linearity 

 and convergence of the surrogate Lagrangian 
relaxation is guaranteed without requiring q* 
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Synergistic Combination with Branch-and-cut 
 The relaxed problem can be efficiently optimized 

approximately by using branch-and-cut 
 If decomposable, solving one subproblem approximately is 

sufficient to satisfy the surrogate optimality condition 
 If not decomposable, optimizing with respect to selected 

decision variables while keeping other decision variables 
fixed is sufficient to satisfy the surrogate optimality condition 

 To further improve efficiency, a warm start uses 
solutions from previous iterations to set the basis and 
 Eliminate portions of the search space thereby leading to 

smaller branch-and-cut trees  
 Allow heuristics to improve the incumbent solution 

 



Flow-Chart of the Synergistic Approach   
Relax global constraints to exploit separability 

(e.g., separate into subproblems) 

Update multipliers by using (1) and 
smooth surrogate subgradients 

Use branch-and-cut + warm start to 
approximately optimize the relaxed problem 

Guarantee convergence 
without requiring q* by 
updating stepsizes using                                                     
Main Theorem: 

Search for feasible 
solutions  

Are stopping 
criteria 

satisfied? 

Stop 

No 

Yes 

Convergence 
without 
requiring q* 
enables the 
synergistic 
combination 
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 Problem: Commit units to satisfy bidding demand 
subject to transitions between configurations of a 
combined cycle plant and conventional units constraints 

 Importance: Problems involving combined cycles have 
been used in power markets but are not well-handled 

Multi-Stage Combined Cycle Units 

GT generators 
(1 or more) 
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Generators are coupled:  
1) Status change of one 

generator can lead to 
status changes of other 
generators 

2) A large number of 
possible transitions 
between states 
complicate the problem 



 Difficulty: Constraints modeling transitions between 
configurations of generators are logical and complex  

 While such constraints can be linearized, because of  
the complex nature of transitions, strong cuts are not 
available within branch-and-cut to handle combined 
cycle constraints efficiently globally 

 In the novel approach, branch-and-cut can handle 
local constraints associated with each subproblem 
locally thereby efficiently optimizing the relaxed 
problem approximately with respect to one combined 
cycle subproblem 

Multi-Stage Combined Cycle Units 
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 To demonstrate the efficiency of surrogate Lagrangian 
relaxation, a problem with 10 CC plants and 300 
conventional units is considered 

Multi-Stage Combined Cycle Units 

Method Feasible Cost Lower Bound Gap (%) CPU Time 
(min) 

Branch-and-cut 50,260,500 45,305,200 9.859 30 
Novel method 49,894,806 49,879,027 0.032 5 

                    Branch-and-cut                                Surrogate Lagrangian relaxation  
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Payment Cost Minimization 
 Problem: Payment Cost Minimization (PCM) commits 

units to minimize the total payment cost to satisfy 
bidding demand PD, and individual unit constraints 

 Simplified formulation w/o considering transmission:  

 

 Simplified price definition constraints:  

 

 Importance: To assess advantages and disadvantages 
of PCM and facilitate a comparative analysis with other 
auction mechanisms, an efficient solution methodology 
is required 
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 While the general problem formulation of the problem 
is nonlinear, the simplified formulation can be 
efficiently linearized 

 Difficulties: Because of the complicated role of prices 
 Strong cuts are not available within pure branch-and-cut to 

handle global price definition constraints 
 When demand constraints are relaxed, the problem is not 

decomposable because of price definition constraints 

 To solve the problem efficiently, the relaxed problem 
is approximately optimized with respect to one (or 
several) bid at a time by using branch-and-cut and 
efficiency is further improved by using warm start  

 

 

Payment Cost Minimization 
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 To demonstrate the efficiency of surrogate Lagrangian 
relaxation, a problem 300 conventional units is 
considered 

Payment Cost Minimization 
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Method Feasible Cost Lower Bound Gap (%) CPU Time 
(min) 

Branch-and-cut 61,271,446 31,903,846 47.91 5 
Novel method 55,553,996 55,240,853 0.56 5 
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                    Branch-and-cut                                Surrogate Lagrangian relaxation  
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Conclusion 
 Major novel theoretical result: Within the surrogate 

Lagrangian relaxation framework, multipliers converge to 
the optimum without requiring q* 

 Surrogate Lagrangian relaxation has been synergistically 
combined with branch-and-cut to solve mixed-integer 
programming problems efficiently  

 Numerical results demonstrate that the innovative 
approach is powerful and efficient for solving mixed-
integer programming problems 

 Broad Impact: The novel methodology opens new 
directions to efficiently solve mixed-integer programming 
problems such as Stochastic Unit Commitment 
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