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What is Flexibility?

* Ability of the power system to follow the
changes in the net load

* Controllable resources must provide:
— Reserve capacity (MW)
— Ramping ability (MW/min)
— Ability to sustain the ramps (min)



Optimizing flexibility

* Providing flexibility costs money

* Optimize the flexibility requirements
— How much?

e Optimize the provision of flexibility
— Where from?

* Day-ahead perspective

e Use available information:
— Forecasts
— Historical data
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Forecasts
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Forecasts

Schedule deployment of resources to meet forecast changes
and uncertainty on the forecast values
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Limitation of forecasts

Because of their limited time resolution, forecasts do not
help with deployment sub-hourly flexibility needs




Historical data

e Actual load
* Actual generation
e 1 minute resolution

* Process this data to
obtain a statistical
description of the needs
for intra-hour flexibility
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Managing day-ahead flexibility

* Inter-hour flexibility:
— Based on forecasts
— Stochastic/Interval/Robust Unit Commitment

— Can we do better using a combination?

* Intra-hour flexibility:
— Based on historic data
— Requirements for capacity, ramp rate, and duration

— How can we optimize the requirements?
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Stochastic, Interval, Robust UC

e Stochastic UC (SUC)

— Minimizes expected cost over a set of scenarios
— Less than optimal dispatch for extreme scenarios

* Interval UC (IUC)

— Minimizes cost of central forecast scenario
— Guarantees feasibility of worst-case scenarios

* Robust UC (RUC)

— Minimizes cost of most expensive worst case
scenario



Interval Unit Commitment




Conflicting objectives

Security > ucorruc

Cost
- SCUC
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CPU time

- IUC or RUC
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Observations

* Day-ahead commitment cost:

CSUC < CIUC

e Expected cost of corrective dispatch:

ACSUC > ACIUC

— Stochastic commitment is less adaptive

* Need for corrective dispatch increases with time
horizon for SUC because uncertainty increases

* |UC carries a “security premium” because it
always considers the worst case
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Hybrid UC formulation
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Hybrid UC formulation (HUC)

><1D6

e |nterval
162} e H bt
' Stochastic
161F mmmmm Deterministic (out of scale) |
1.6

1 1 1 1 1 1 1 1 1 1 1
2 4 B 8 10 12 14 16 18 20 22 24
Switcing time, hour

The day-ahead cost of the HUC decreases with 5%



Hybrid UC
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The security premium of the HUC decreases with 5%
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Hybrid UC: Optimal Switching Time
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The expected cost of load shedding increases
with 5% for the SUC
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Hybrid UC: Optimal Switching Time

28 | T T T T | T T T T
1—\_ Hybrid Security cost
2 - ®  Swtiching time (VOLL=$10000/MWWh)

@  Switching time (VOLL=$5000/M\Wh)
Uncertainity under %Y OLL=$10000/MWh
s | ncertainty under VOLL=$5000/MWh

1

26

25

24

23

Security Cost, §

22

21 Optimal y
NI s Switching Time |

19 1 | 1 1 | 1 | | 1 | |
2 4 6 8 10 12 14 16 18 20 22 24
Switching Time, hour

The optimal #¥depends on VOLL

© 2013 D. Kirschen and University of Washington



Monte—Carlo simulation
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===HUC, VOLL=$10000/MWh
=== HUC, VOLL=$5000/MWh
----- |UC

1.1 1.15 1.2
Total operating cost, p.u.
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Monte—Carlo simulation

Deterministic ~Stochastic  Interval  Hybrid - Hyorid |
Expected cost 1.09 1.01 1.07 1.02 1.01
Minimum cost 1.04 0.98 1.05 0.98 1.007
Maximum cost 1.15 1.04 1.08 1.03 1.06
95% cost 1.12 1.03 1.07 1.02 1.05
RT Unitstartups: = g1o53 | /5 0 0/2/3 1/2/5
(min/mean/max)
EENS, MWh 13.6 0.4 0 0 0.1

(All costs normalized on the basis of the day-ahead SUC cost)
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Intra-hour Flexibility

* Optimize flexibility requirements based on
historical data

* |dentify deviations between forecast and
actual net load

— Capacity, ramp rate, duration

* Balance cost and benefit of flexibility based on
this data



Deviations between actual and forecast
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Triplets of net load deviations




Cost/Benefit analysis
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not served
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wind

Progressively expand the requirements until we
find the data point that minimizes this objective
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Tailored flexibility requirements

e Secondary control
* Tertiary control

* Time of day

* Day of week

* Season



Flexibility requirements for each hour

Secondary capacity requirements
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Effect on Expected Energy Not Served
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Marginal cost of flexibility requirements
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Summary

* Inter-hour flexibility
— Use forecasts
— Various formulations of unit commitment

* Intra-hour flexibility
— Capacity, ramp rate, ramp duration
— Use historical data
— Optimize requirements using cost/benefit analysis

* Optimize procurement of inter- and intra-hour
flexibility simultaneously within UC
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