Optimal Unit Commitment under Uncertainty in Electricity Markets

F. L. Alvarado and R. Rajaraman
FERC Workshop June 2013
Washington, DC

With help from Brad Wagner at LRCA
Opening remarks

• We describe a new way to think about Unit Commitment (UC) under uncertainty
 – We describe optimal commitment strategies not just optimal unit commitment
 – This talk is about concepts, not algorithms

With better technology, can we solve a better problem?
Our objectives

• To show that conventional UC does not lead to optimality under uncertainty
 – We use a trivially simple example
 – Optimality requires *strategies*, not schedules
• To outline a modified LR solution method
 – Options not considered include modifications to Mixed Integer Programming (MIP) methods
Stochastic Unit Commitment

• Consider using Lagrangian Relaxation (LR)
 – Since energy and reserve prices are outputs of UC, start with initial guesses of prices and their probability distributions

• Refine price estimates and their probability distributions until convergence is reached
Uncertainty matters: an example

• A 4-generator energy-only 2-scenario case

• Compare three UC methods
 1. Deterministic commitment using expected values
 2. Commitment based on Monte Carlo scenarios
 3. Stochastic dispatch
The example

• Three future time periods $t=1, 2, 3$
• Four generators (next slide)
• Demand*: 146 MW, 181 MW, 146 MW
• Commitment decisions to be made at $t=0$
 – Find optimal commitment and dispatch strategy at $t=0$ to minimize expected total cost over all periods and all scenarios

*) In this example the demand is certain
Example generator features

- Generator B, 100 MW, fixed schedule
- Generator G, 15-40 MW, $33/MWh, startup $650, minimum up time 2 periods, initially offline
- Generator P, 60 MW, $50/MWh
- Generator W, 10 or 50 MW, negative $25/MWh*
 - W capability is perfectly correlated, i.e., it can produce up to either 10 MW or 50 MW across all periods
 - But we must wait for t=1 to find out…

(*) The capability of W is uncertain at t=0
1. Deterministic commitment

• Assume W produces 30 MW all 3 periods
• Dispatch is:
 – Period 1: B=100, G=16, P=off, W=30. Price: $33
 – Period 2: B=100, G=40, P=11, W=30. Price: $50
 – Period 3: B=100, G=16, P=off, W=30. Price: $33
• Solution commits G at t=0 (wrong)

What happens when W=10 or when W=50?
2. Monte Carlo Scenarios

• For $W = 10$:
 – $G = [36, 40, 36], P = [0, 31, 0], W = [10, 10, 10], p = [33, 50, 33]$

• For $W = 50$:
 – $G = [0, 0, 0], P = [0, 31, 0], W = [46, 50, 46], p = [-25, 50, -25]$
 • G does not start because its 2 hour minimum up time;
 losses in either period 1 or 3 negate profits in period 2

• Monte Carlo done this way is incorrect
 because for each scenario, the future is certain

$B = 100$ all 3 periods, either scenario
3. Optimal Commitment Strategy

- At t=0, do not commit G
- At t=1, commit G conditionally
 - If W=10 at t=1, commit G: G=[0,40,36], W=[10, 10, 10], P=[36,31,0], p=[$50, $50, $33]
 - If W=50 at t=1, do not commit G: G=off, W=[46, 50, 46], P=[0,35,0], p=[-$25, $50, -$25]

B=100 all 3 periods, either scenario
<table>
<thead>
<tr>
<th>Period</th>
<th>B</th>
<th>G</th>
<th>P</th>
<th>W</th>
<th>D</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>16</td>
<td>0</td>
<td>30</td>
<td>146</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>40</td>
<td>11</td>
<td>30</td>
<td>181</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>16</td>
<td>0</td>
<td>30</td>
<td>146</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>B</th>
<th>G</th>
<th>P</th>
<th>W</th>
<th>D</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>36</td>
<td>0</td>
<td>10/46</td>
<td>146</td>
<td>33/-25</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>40</td>
<td>31/31</td>
<td>10/50</td>
<td>181</td>
<td>50/50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>36</td>
<td>0</td>
<td>10/46</td>
<td>146</td>
<td>33/-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Period</th>
<th>B</th>
<th>G</th>
<th>P</th>
<th>W</th>
<th>D</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>36/0</td>
<td>10/46</td>
<td>146</td>
<td>50/-25</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>40</td>
<td>31/31</td>
<td>10/50</td>
<td>181</td>
<td>50/50</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>36</td>
<td>0</td>
<td>10/46</td>
<td>146</td>
<td>33/-25</td>
</tr>
</tbody>
</table>

Correlation between periods need not be 100% for solution to be valid
Verifying the Solution

- Optimize G’s profits given two equally probable price forecasts at t=0:
 - Either price = [$50, $50, $33] or price = [-$25, $50, -$25]
- If G commits at t=0
 - G’s dispatch would be [40, 40, any] for scenario 1 and [15, 40, 0] for scenario 2
 - Profits = $710 for scenario 1 and -$840 for scenario 2; thus, expected profits are negative
 - Therefore it is not optimal for G to commit at t=0
Comments about the example

• The optimal commitment is a *strategy that is conditional on the state of the world*

• Many random scenarios can be handled (we use the trivially simple case of two scenarios)
 – Scenarios should consider demand uncertainty, correlation between output of wind between time periods, forced generator outages, etc.
Stochastic Unit Commitment: Possible Approaches

• Brute force Monte Carlo

• Modified Lagrangian Relaxation (LR)
 – Or perhaps modified Mixed Integer Programming (MIP) – not explored here
Stochastic Unit Commitment by LR

• We suggest an adaptation of LR
• The optimal solution is characterized by prices and their probability distribution, and by generator commitment and dispatch strategy for each
• At the optimum:
 – Expected total costs (over all time periods and uncertainty scenarios) are minimized
 – For each generator, expected profits are maximized
Traditional Lagrangian Relaxation

Maximize profits over T periods

Prices
- Energy
- Regulating Reserves
- Spinning Reserves
- Supplemental Reserves
- Backup Reserves for each period 1,2,..,T

Feedback Loop to Adjust Prices
(ensure that dispatch satisfies system requirements)

Generator 1
Self-commitment (maximize profits)

Generator 2
Self-commitment (maximize profits)

Generator N
Self-commitment (maximize profits)

Aggregate Schedules
Of Energy and Reserves
- Energy
- Regulating Reserves
- Spinning Reserves
- Supplemental Reserves
- Backup Reserves for each period 1,2,..,T
Traditional LR (step 1)

• Use **prices** as intermediate variables to decouple commitment among generators
 – Given prices of energy and reserves, produce a profit-maximizing schedule for any generator using backward DP
 • Find profit-maximizing schedules for each period and for each generator
 – This yields generation schedules for each period
Traditional LR (step 2)

- If aggregate schedules from step 1 differ from energy and reserve requirements in any period, adjust prices and repeat step 1
 - The price is adjusted through gradient search
 - Caveats:
 - Convergence can be unstable
 - Dual solution may not be feasible
 - Near degeneracy of solutions
 - Issues often handled by heuristics during the final iterations
LR under uncertainty

Self-commitment Under Uncertainty

Prices and probability distribution

Optimal Generator strategy

Other Uncertain Parameters

Feedback Loop

Heuristics

Demand
The proposed modified LR

• Part 1: Self-commitment
 – Self commitment must consider uncertainty
 • “Self-commitment” can be done by the system operator
 – The result is a strategy, not a fixed schedule

• Part 2: Feedback Loop
 – Prices are not just prices, they are price distributions
 – They are adjusted based on mismatch between aggregate schedules and aggregate demand, and based on uncertainty parameters
Optimal self-commitment strategies

• There is an optimal strategy that a generator can follow to optimize its expected profits
 – A “self-commitment” optimal strategy differs from a commitment based on certainty of prices

• The problem is solved using nested backward dynamic programming

The problem can be solved by the ISO on behalf of each generator
(i.e., “self-commitment” is a bit of a misnomer)
Generator-level decision issues

- Prices are uncertain
- How much to allocate to each market?
 - *Energy or various types of reserves*
- Operational constraints
- Obtain estimates of profits and losses
Cost Characteristics

• Generator costs can include:
 – Incremental or marginal costs
 – Startup/shutdown costs
 – No-load costs
 – Ramping costs

• Cost may be non-convex because of:
 – Startup and shutdown costs
 – “Valve points”
 – Declining marginal costs
Generator Operational Constraints

• MW limits on energy and reserves
• Sum of energy and reserve MWs limits
• Inter-temporal constraints
 – Minimum up/down times
 – Startup delays
 – Multi-period emissions or energy constraints
 – Ramping rate limits
Generator-level decisions

• Generators decisions must consider profits over many periods
 – Are $expected$ revenues $> expected$ costs$?

• For each period, decisions include:
 – Startup/Shutdown?
 – Ramp up/down next hour?
 – Offer reserves or energy?
 • Or some of each?
Reasons for price variability

• Uncertainty in demand
 – Weather and non-weather related

• Generation output uncertainty
 – Forced outages
 – Wind uncertainty

• Transmission outages
 – Contingency constraints and congestion
Handling Price Uncertainty

• Use discrete price states (*High*/*Medium*/*Low*)
• Determining optimal commitment strategy is similar to determining when to exercise an option
 – When to commit, when to sell reserves, etc.
• Price correlation issues:
 – Are prices correlated between time periods?
 – Are prices correlated between markets?
Locational factors

• Every generator sees a unique price distribution for energy (and reserves) as a result of congestion and losses

• Optimal commitment on a generator-by-generator basis optimizes every generator’s value to the system
Sample energy costs and prices
Results summary

These model results use the optimal generator commitment strategy over 10,000 Monte Carlo runs.

Expected Profit

- Expected Revenue: $389,300
- Expected Costs: $288,837
- Minimum Profit: -$16,440
- Maximum Profit: $262,280
- Std. Dev. of Profit: $36,935

Optimal Commitment and Dispatch

- View the Generator Commitment Decisions Under the Optimal Strategy
- View the Optimal Dispatch Strategy Without Inter-Temporal Constraints
- View the Dynamic Program Decision Tree
Profit distribution
Expected profits and costs by hour
For more details…

• See “Optimal Bidding Strategy Under Uncertain Energy and Reserve Prices”, PSERC Publication 03-05, April 2003
 – Find optimal self-commitment strategy under uncertainty
 – Is “implemented” by GenOptimizer, a program developed by LRCA
 • GenOptimizer can be used for transmission planning, bidding strategies, generator siting analysis, etc.

Feedback Loop Description

- **Step 0:** Assume energy and reserve price distributions
- **Step 1:** Get optimal UC strategies for each generator
 - Perfect for parallel computation
- **Step 2:** Aggregate schedules and compare to energy and reserves system requirements
 - Adjust prices based on mismatch between generation and requirements
 - Use Monte Carlo applied to optimal commitment strategies
- **Go to Step 1 if not converged**

Heuristics needed to simplify computations (research required)
Impact on ISO Markets

• Most ISOs run one day-ahead UC per day
• Replace DA UC by a dynamic, rolling, 24-hour look-ahead stochastic UC run each hour
• Update commitment decisions every hour
 – This will result in changes in the DA market, but the market will produce better results
Parting comments

• We redefine Unit Commitment from “create a schedule” to “create a strategy”
 – We suggest using a rolling hourly 24-hour UC
• We suggest a modified LR method to handle price uncertainty
 – Other possibilities include modified MIP
• The approach is optimal for each generator
• It is well suited for parallel computation
GenOptimizer*: Optimal self-commitment under uncertainty

• It implements optimal self-commitment:
 – It finds profit maximizing strategies
 – It can assist in finding optimal bidding strategies
 – It can help assess transmission needs
 – It can help value generation (including wind)

• It is educational and informative

(*) Developed by Laurits R. Christensen Associates.
For more information contact Brad Wagner at LRCA (brad@caenergy.com)
Uses of GenOptimizer

• For optimal self-dispatch under uncertainty
• For transmission planning assessment
• For generator bidding strategy optimization
 – In disputes about market power behavior
• For generator valuation and siting analysis
• As part of an integrated UC under uncertainty as proposed in this talk
GenOptimizer Inputs

- Energy and reserve price forecasts
- Price volatilities
- Fuel costs
- Generator heat rate
- Minimum and maximum energy dispatch constraints
- Maximum reserve dispatch constraints
- Likelihood that offered reserve services will be called
- Start up time of a cold generator vs. a hot generator
- Minimum down time of a generator
GenOptimizer Inputs (cont.)

• Time it takes for a hot generator to become cold
• Ramping rate of the generator
• Cost to start a cold generator vs. a hot generator
• Cost to shut down the generator from a low dispatch vs. a high dispatch
• Banking costs
• No-load costs
• Ramping costs
• Planned generator outages and must-run conditions

Or just about anything an individual generator could care about
How to Model State Transitions

Time t

- **UP**
 - Cost = 0

- **TRANS**
 - Cost = 1000

- **DOWN**
 - Cost = 3500

Time $t+1$

- **UP**
 - Cost = 0

- **TRANS**
 - Cost = 0

- **DOWN**
 - Cost = 0

\[\text{Cost} = \$0 \]
Feasible State Transitions

Use Backward DP to solve self-commitment problem
How to model ramp rates, startup times and inter-temporal constraints
GenOptimizer Execution

- Backward Dynamic Programming determines the optimal strategy in every time period, generator dispatch state, and price level
 - Considers price uncertainty and operational constraints
- Monte Carlo is used to evaluate the performance of the commitment strategy under price volatility.
- Finds the optimal energy and reserve dispatches for given price levels
GenOptimizer Outputs

• Expected revenue, costs, and profit by hour for energy and reserve services
 – Standard deviation of expected profit

• Distribution of profits
 – Minimum and maximum profit achieved over a set of Monte-Carlo runs

• Analysis of commitment and optimal dispatch strategies
Time permitting, we will do a short demonstration of GenOptimizer.