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Project Goals

Execute stochastic unit commitment (UC) at scale, on real-world data

sets
— Stochastic UC state-of-the-art is very limited (tens to low hundreds of units)

— Our solution must ultimately be useable by an I1SO
* Produce solutions in tractable run-times, with error bounds

— Parallel scenario-based decomposition
* For both upper and lower bounding (Progressive Hedging and Dual Decomp.)

— Quantification of uncertainty
* Rigorous confidence intervals on solution cost

 Employ high-accuracy stochastic process models
— Leveraged to achieve computational tractability while maintaining solution

quality and robustness
 Demonstrate cost savings on an ISO-scale system at high renewables

penetration levels

Laboratories
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Day-Ahead Unit Commitment (SCUC D-8h)

 Day-Ahead Energy Market (DAEM or DAM)

* Clears demand bids and supply offers at 1600h on the day prior to the
operating day

* Produces:

— Hourly schedules for the next operating day for market participants
(i.e., generation and demand)

— Hourly interchange schedules
— Hourly day-ahead Locational Marginal Prices (LMPs)

No reserve requirements

DAEM
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Reliability Unit Commitment - RUC (SCUC D-2h)

* Reliability Assessment (Reserve Adequacy Analysis - RAA)

 Minimize additional start-up and no load costs to provide sufficient
capacity to satisfy the forecasted load plus the operating and

replacement reserve requirements
e Clears ISO forecasted load at 2200h
e DAM commitments are respected
* Produces:
— Additional commitments
— Updated generator dispatch points

DAEM
(UC) RAA
D
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Look-Ahead SCED (H-1h)

e SCED with ability to bring online fast start resources
* Intended to meet intra-hour reserve requirements
 Updated load and variable generation forecasts
* |t produces:

— Generator setpoints

— Commitment of fast start units

DAEM
(UC) RAA : b :
D-8h D-2h 00h P 1§h zjh_
H-1h
SCED2
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General UC Model Structure

Objective: Minimize expected cost

AR First stage variables:

4~: ':o.o:o 'o'oo: oo:':v ® Uniton/Oﬁ (perhour)
L
‘*25_33‘.. oooooooo . o9 o

§10~. .:o ::. ....I o:o ° .ov
o L] L ] L) L L] L ] L J L] L

2.0 0 ° see oo ° ° - .
DR Nature resolves uncertainty
ot PR - | * Renewables output

Hour of day

* Forced outages

\

Second stage variables (per

hour):
e Generation levels
e Power flows

Voltage angles

Scenario 1 Scenario 2 Scenario n
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RUC: Knowns vs. unknowns

Afternoon of day D-1, ISO For stochastic UC model, ISO
knows: needs:
* Past hourly weather * Multiple scenario paths: 24

(at least) hours” worth of
— Loads = focus of this talk

— Variable generation
availability

Weather forecast for day D — Thermal unit availability
 Probabilities of occurrence

— Joint for multiple variables
 Temporal tree structure

howns Stochastic -, Scenario Needs
Process Model Generation
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Impact of scenari
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Too “narrow” Too “wide”
e Optimization fails to * Optimization result is too risk-
account for actual risks averse
* Too few low-cost units  Too many low-cost units
committed committed
— Cost: Start up additional high- — Cost: Excessive no-load cost of
cost units committed units
— Reliability: Shed load — Environmental: curtail variable
generation
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Overview of process to generate load scenarios
on day D-1 for day D
/ fovr\/ezet:zzr;i:)r /
day D /

Historical day-ahead
weather forecasts and
actual loads (hourly)

Identify a segment of
historical days with similar
weather forecasts to day D

= number
L of scenarios

Fit an epi-spline
regression function for

Based on info the load on days in this
the ISO has... segment Generate n scenarios
forday D
Fit an epi-spline density
function for the load Scenarios
forecast errors on days in n sequences of hourly )
this segment, integrate to loads, with a describe
\ get cdf y probability for each uncertainty
sequence

accurately
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Season: A/C or heat, d

.
|
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Influences on load

urnal light patterns
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ldentify data segment

e Separate by seasons = date ranges

— Diurnal light patterns, heating vs. cooling, impact of wind and
humidity (RealFeel temperature)

* Within a season
— Transform every day to “Wednesday” based on average load patterns
— Transform zones to a “master zone”

— Segment days by partition of temperature forecast distribution
(average, or a particular hour)

Pr|Temp<¢) |
Py
P>
P Hot days
Cooldays s ¢ ty=F"(py) Temp
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Fit epi-spline regression function

* Data: (forecast temp, forecast dewpt, actual load) in hour h, day (t}{,d,{,l,{)

* Model: l(r) =z (r)t(r)+zd (r)d(r)
where I(r), t(r), d(r) are actual load and forecast weather variables as
functions of continuous time, r, and the regression functions z* (), z" ()
are twice-differentiable.

* Approximate z'(r),z’ () with epi-splines s’ (r),s” () that have piecewise
constant second derivatives on {(),m,rk_l,rk,m,r]v = 24/5}

* Integrate twice to get k=1

s(r)=s, +v0r+52(r—rl. +68/2)a, +(1/2)(r—rk_l)2ak, re (I”k_l,rk]
. .i:1 . .
* Measureerrorsas ¢, =1/ —s' (h)t] +s (h)d]

e Optimization problem

min le=(e/,h=1,..,24; je J)

p
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Advantages of the epi-spline regression
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* Rich family of possible curves, not just polynomials
 Nonparametric estimation of hourly load patterns

* Does not involve lagged loads

* No assumptions about error distributions; e.g., white noise

* (Can add constraints based on “soft information” —
compensate for small segmented data sets
— Values: do not underestimate peak loads
— Slopes: understand daily patterns of increase/decrease
— Curvature: (so far, bounds have not had much impact)

6/24/2013 FERC Technical Conference 13
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Demand[MW]
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Cold days

— Actual load
45001 — Expected load
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— Actual Ioad
— Expected load

Days from 2011-07-16 to 2011-07-24

Hot days

Days from 2011-07-16 to 2011-07-24

Aug, 2011, in CT

FERC Technical Conference
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Absolute daily error

-3 o

Relative daily error

eze/ = ej/zhllf

Average relative daily error

ARDE = ZEJ » /

J

new england

Root mean squared deviation

RMSD = \/ﬁz,- 6!, ~ ARDE)
Season | ARDE (%) | RMSD
Spring | 1.0952 0.9021
Summer | 3.4248 1.9614
Fall 2.6202 3.2381
Winter | 2.5809 1.5652

14
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Obtain error distribution for each hour

* For hour h, compute mean and standard deviation of
errors in the segment

e Let a':min{(ej,je J),E—30'e},,3=max{(ej,je J),E+30'e}
* Approximate error density as
f(x)= e xe |, ]

where w(x) is an epi-spline having piecewise constant
second derivatives a, € [0,k

* For numerical reasons, translate domain to [0, b-a] and
then rescale to [0,1]

e Maximize likelihood of the observed errors
— Convex objective function
— Linear constraints

* Integrate density to obtain cumulative distribution function

6/24/2013 FERC Technical Conference 15
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Error densities for an hour

Error [MW] Error [MW]

 Unimodal by constraint

* Not necessarily symmetric or centered at zero

* Vary by day segment and hour

* Incorporate both weather forecasting and load modeling errors

6/24/2013 FERC Technical Conference
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Simulation Support

» We provide support for a deterministic simulation of stochastic
optimization applied to 2011 to estimate the potential energy
cost savings versus deterministic optimization.

» We will give you a flavor of the work to obtain and evaluate
scenarios.

» We hope to publish some scenarios in the next few months.



Load, Wind, Outages

» We can forecast load based on weather forecasts and we use
that forecast technology to generate load scenarios.

» We use 2011 actuals as actuals.

» We use 3Tier Analogs to get wind power scenarios.
» We use EWITS 2011 wind power as actuals.

» We generate outage scenarios based historic outage rates.

» We simulate actuals.



Left and right sides

> Left side: build forecast models and analyze errors

» Right side: create scenarios



Scenario generation
Objectives

Small number of scenarios

v

v

Cover almost all possible outcomes

Have a distribution similar to the observed distribution

v

v

(so these are not Monte-Carlo samples)



Example with 27 Scenarios

Scenario loads for date 2011-04-10 and zone aggregated

15000
14000
13000
2 12000
S
11000
10000} e—e Actual load
e—e Regression load
&—e Scenarios
9000y 5 10 15 20

Time [hours]



Another Example with 27 Scenarios
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Scenario loads for date 2011-04-11 and zone aggregated
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Yet Another Example with 27 Scenarios
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Scenario loads for date 2011-04-12 and zone aggregated
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Last Example with 27 Scenarios

Scenario loads for date 2011-04-13 and zone aggregated

17000

16000

15000

14000
E 13000
5

12000

11000

e—e Actual load
e—e Regression load
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8 Scenarios for January 1

(but ignore its special nature, so these are not very good)

Scenario loads for date 2011-01-01 and zone CT

42001

4000

3800

36001

Load

3400

3200

30001

Actual load
®—e Regression load
*—e Scenarios

2800

2600

0 5 10 15 20
Time [hours]



Measuring quality of scenarios

Introduction

The next issue is to measure the quality of our scenarios S.
» Compare different methods to generate scenarios
» Compare different sets of parameters
» Find the minimum amount of scenarios that are sufficient to
obtain similar results

> Many other...



Measuring quality of scenarios

Introduction

How do we measure the quality of our scenarios? Looking at
scenario properties:

» Distance between the scenarios and the observed distribution

» Number of outliers

v

Distance from the observed value to the closest scenario

v

Distance from the observed value to the farthest scenario



Sample of Outlier Study

Spring
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Conclusion

» We have given an overview of the methods that an ISO would
use to generate scenarios for day-ahead hourly demand.

» We have briefly touched on how we evaluate those scenarios.

» Qur immediate goal is to provide input to a stochastic SCUC
that is similar to the input that an ISO would provide in
practice.



