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Background 
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• Existing reserve requirements (contingency / spinning and 
non-spinning reserve) are imposed inside of day-ahead unit 
commitment to ensure sufficient backup capacity 
• Do not guarantee N-1 because congestion may prevent reserves from 

being deliverable 
• Ensuring sufficient and deliverable reserves (quantity + 

location) will be increasingly more difficult with renewables 
• Potential solutions: 

• Implement stochastic programming  
• Use existing reserve requirements/increase reserve quantity 

 

Computational challenge 

Costly 

• Best solution: a balanced approach that combines advanced 
reserve policies with stochastic programming algorithms 
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Motivation 
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• Create generalized algorithms that mimic 
existing (and effective) reserve policies 

• Embed dynamic reserve policies within 
stochastic programming frameworks 

• Improve scalability and convergence by 
attacking the low hanging fruit 

• Minimize the uncertainty needed to be 
captured by stochastic programming 
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Progressive Hedging 
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• Horizontal decomposition approach, trivially parallel 
• Treat scenarios as independent, deterministic problems 
• Non-anticipativity constraints are relaxed 

• Does not guarantee optimality for MILPs – a heuristic 
• Asymptotic linear convergence rate for LP 

 

• 𝑥𝑠
(𝑘) = argmin

𝑥,𝑦𝑠
𝑐𝑇𝑥 + 𝑤𝑠

(𝑘−1)𝑇𝑥 + 𝜌
2
𝑥 − ẋ(𝑘−1) 2 + 𝑓𝑠𝑇𝑦𝑠  

• ẋ(𝑘) = ∑ P(𝑠)𝑥𝑠
(𝑘)

𝑠  

• 𝑤𝑠
(𝑘) = 𝑤𝑠

(𝑘−1) + 𝜌 𝑥𝑠
(𝑘) − ẋ(𝑘)  
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Progressive Hedging Tuning 
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• Penalty factor (𝜌) 
• Strong impact on solution quality, convergence 
• Dynamic and logical for best results (future work) 

• Bundling scenarios to break degeneracy 
• Variable fixing for extensive form 
• Declining relative mipgap termination criteria 

 
 

[1] J.-P. Watson and D. L. Woodruff, “Progressive hedging innovations for a class of stochastic mixed-integer resource 
allocation problems,” Computational Management Science, vol. 8, pp. 355–370, November 2011. 
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Dynamic Reserve Policies 
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• Existing reserve requirements 
• Quantity of reserve must exceed worst case contingency 
• Impose a quantity requirement but not a locational requirement 

• Exception: reserve zones are used to impose regional requirements 
• Exception: stochastic programming determines reserves implicitly 

• Dynamic reserve policies: 
• Reserve requirements that reflect operating states 
• Improve deliverability of reserves by accounting for congestion 

• Dynamic reserve zones: 
• Identify critical bottlenecks and critical regions that require 

additional reserves 
• Account for impact of renewables 
• Account for post-contingency flows 
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PH with Dynamic Reserves: Model 
Development 
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Day-Ahead Scheduling 
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Day-Ahead Unit 
Commitment 

Contingency 
Analysis 

Out-of-Market 
Corrections 

• Solve SCUC 
• Report 

commitment, 
dispatch, and 
reserve solution 

• Power flow analysis 
• Check select N-1 

contingencies and 
wind scenarios 

• Report constraint 
violations 

• Modify SCUC solution 
• Re-dispatch and turn-on 

additional units to 
obtain reliable solution 

Report Day-
Ahead Schedule 



Progressive Hedging 
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Traditional Progressive Hedging 
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Scenario: S1 SN 
…. 

Evaluate Penalty Penalty 

Fix Converged Vars. 

Solve EF 
Stochastic SCUC 

Contingency 
Analysis 

• Solve N deterministic SCUC in parallel 
• Check convergence of solutions 
• Apply penalty to each SCUC to encourage 

convergence 
• Stopping criterion: time 

• Fix converged variables; determine status of 
remaining vars. with EF S-SCUC 

• Solve extensive form (EF) stochastic SCUC 
• Send resulting commitment, dispatch, and 

reserves to contingency analysis 
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PH + Dynamic 
Reserves 

Traditional PH 
Iteration: i 

% Improvement 
in Convergence 

< ε?  

No i = i + 1 

Yes Dynamic 
Reserves Model 

Generate New Reserve 
Policies (Zones, Levels) 
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Dynamic 
Reserves Model 

PH Scenario Sj 
Solution 

Contingency 
Analysis 

Record 
(Probabilistic) 
Power Flows 

Pass dispatch solution 

Statistical 
Clustering 

Sensitivity Index 
Determine # of 

Zones 

Reset weights within PH 
Apply Reserve Policies 
Re-solve Traditional PH 
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Statistical Clustering 
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• Statistical clustering method: K-means 
• Centrality metric: Weighted PTDF differences 

• Lines with high average loading and variability receive higher 
weights, [2] [3] 

• Uses a similar metric to the performance index (PI) [4] 
• Goal: incorporate variability of renewable resources and post-

contingency line flows 
• Goal: identify critical lines and generators that have similar 

impacts on these critical lines 
• Goal: improve placement of reserves to encourage 

convergence 
[2] F. Wang and K. W. Hedman, “Reserve zone determination based on statistical clustering,” NAPS 2012.  
[3] F. Wang and K. W. Hedman, “Dynamic reserves for day-ahead unit commitment with renewable resources,” IEEE Trans. 
Power Syst., under review. 
[4] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and Control, 2nd Ed. New York, NY: Wiley, 1996. 
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Sensitivity Index 
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• Custom factors based on OTDF and LODF 
• Offline study: loss of 1 MW (generator or line) 
• Derivative QP models to minimize sum of squared 

deviation in line flows 
• Simulation of intelligent re-dispatch for location 

• Algorithm from [4] for quick calculation 
• Number of zones based on mean and standard 

deviation of sensitivity index 
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Sensitivity Index 
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Results 
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Modeling 
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• RTS-96 test case: Winter weekday, weekend 
• Scenarios developed from the NREL Western 

Wind Integration Dataset 
• Wind placed at periphery of network 
• 512 scenarios, selection procedure for 64 [5] 

• C code for Pyomo in parallel, Gurobi 5.5 
• Dual Intel Xeon E5-2687W, 128 GB RAM 

[5] J. Dupacová, N. Gröwe-Kuska, and W. Römisch, “Scenario reduction in stochastic programming: An approach 
using probability metrics,” Math. Program, series A, vol. 3, pp. 493–511, 2003. 
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Modeling 
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• Progressive Hedging 
• Scenario bundling (pairs), declining mipgap 
• Terminates by fixing converged binaries 

• Committed units fixed 
• Uncommitted units fixed only in low sensitivity periods 
• Fast-start units that converged off are never fixed 

• Comparison between this form of PH and the 
expanded algorithm with dynamic reserve zones 
• Reserve zones applied for 3 iterations as hard 

constraints, then only as PH penalties in augmented 
objective function 

 
 



22 

Results: PH 
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Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

A B C D 

 
 
 
 
 
 
 

• Times represent end time of current iteration of PH 
• Binaries are the remaining unit commitment variables that have not converged 

Dec 18th  New Method 
Peak Load 
One Patch 

Pure PH 
Peak Load 

New Method 
Peak Load 

Three Patches 

Pure PH 
Peak Load 

Time 1251s 1255s 3157s 3049s 

U norm 0.370446 0.317263 0.186529 0.321895 

Binaries 7 13 4 12 
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Results: EF Stochastic SCUC 

23 

Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

C D 

Dec 18th  New Method 
Peak Load 
One Patch 

Pure PH 
Peak Load 

New Method 
Peak Load 

Three Patches 

Pure PH 
Peak Load 

Cost 2736396.05 2736396.05 2727516.72 2736396.05 

Time 2422s 2787s 5045s 4454s 

Full EF 40189s 

Bound 2638794.33 (to 0.39%) 

Optimality 
Gap 

3.70% 3.70% 3.36% 3.70% 

A B 
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Results: Contingency Analysis 
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Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

D 

Dec 18th  New Method 
Peak Load 
One Patch 

Pure PH 
Peak Load 

New Method 
Peak Load 

Three Patches 

Pure PH 
Peak Load 

Violations 405 405 389 407 

E(LS)/h 0.01893 0.01893 0.01180 0.01894 

Diff 0% -37.66% 

EF E(LS)/h 0.06988 

EF Diff -72.92% -72.91% -83.11% -72.90% 

A B C 
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Results: Out-of-Market Corrections 
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Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

A B C D 

• Ongoing work 
• Developing OMC algorithms [6] 
• Developing OMC decision support tool for operators [6] 
• Tool can also be used to establish the true cost 

associated with new day-ahead scheduling procedures 
and algorithms 

[6] Y. Al-Abdullah, M. Abdi-Khorsand, and K. W. Hedman, “Analyzing the impacts of out-of-market corrections,” IREP 
2013, submitted.  
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• Dynamic reserves can improve both PH 
convergence rate and solution quality 

• Sensitivity metric incorporated within PH 
algorithm quickly identifies time periods 
which need stronger reliability policies 

• Extensive form termination phase of PH can 
achieve higher quality solution by not fixing 
off-converged units in time periods when 
sensitivity metric is relatively high 
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Future Work 
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• Apply it to the FERC PJM 14,000 Bus Test Case 
 

• Utilize out-of-market algorithms to confirm 
final costs 
 

• Develop embedded nomograms 
 

• Demonstrate scalability 
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Questions?  
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For additional information or to provide additional feedback, contact: 
 

Garret LaBove (garret@asu.edu) 
Kory Hedman (Kory.Hedman@asu.edu) 

mailto:garret@asu.edu
mailto:Kory.Hedman@asu.edu
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Results: PH 
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Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

A B C D 

 
 
 
 
 
 
 

• Times represent end time of current iteration of PH 
• Binaries are the remaining unit commitment variables that have not converged 

Dec 16th  New Method 
Light Load 
One Patch 

Pure PH 
Light Load 

Time 951s 996s 

U norm 0.00000 0.085626 

Binaries 0 2 
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Results: EF Stochastic SCUC  
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Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

C D 

Dec 16th  New Method 
Light Load 
One Patch 

Pure PH 
Light Load 

Cost 1101406.32 1078137.01 

Time 2679s 3024s 

Full EF 30137s 

Bound 1056715.41 (to 0.37%) 

Optimality 
Gap 

4.23% 2.03% 

A B 
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Results: Contingency Analysis 
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Progressive 
Hedging 

Extensive Form 
Stochastic UC 

Contingency 
Analysis 

Out-of-Market 
Corrections 

D 

Dec 16th  New Method 
Light Load 
One Patch 

Pure PH 
Light Load 

Violations 367 390 

E(LS)/h 0.00885 0.00959 

Diff -7.70% 

EF E(LS)/h 0.06303 

EF Diff -85.96% -84.79% 

A B C 
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