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Stochastic Unit Commitment



UC Formulation
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UC Formulation
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UC Formulation Extensions

Storage

Non-spinning reserves:Spinning reserves:

Spot market buy/sell / Demand response

DC power flow constraints

Underway ……………………………
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Stochastic Unit Commitment –
 

Scenario Tree

t0 t1 t2

s1

s2

s3

s4

s1 s2

s3 s4

Scenario Formulation:
If two scenarios are 
indistinguishable up to time t, 
then the decisions for both 
scenarios by time t should be 
the same.
If                              , then we 
add equalities

We call the collection of this 
equalities as nonanticipativity

 
constraints

(s1s2 s3 s4 )

n0

n1

n2

n3

n4

n5

n6

Nodal Formulation:
We use a single set of 
decision variables for each 
node of the scenario tree.
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Stochastic Unit Commitment -
 

Formulation
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Integrating Renewables



 

Wind energy is forecasted using weather models
– Wind speed and direction can be forecasted but with uncertainty
– For each farm, generation gi,t

 

is a random variable


 

Assume that wind energy (subject to technical cut-in constraints) has to 
be used (regulatory)

– A must-take constraint


 

Therefore the total demand can be written as 
– Dt

 

= dt

 

–

 

i

 

gi,t

 

(a new random variable)



 

In DC power flow model, each wind farm acts as a new generation 
demand point, and thus modeled separately.

9





 

Establishes a tighter 
upper bound than 
Pflug’s

 

approach, which 
considers the 
optimization problem 
underlying the 
stochastic program in 
addition to the Pflug’s

 
approach that 
considers only the 
underlying stochastic 
process.


 

Not only works with the 
worst-case upper 
bound, but also obtains 
the real upper bound 
asymptotically. 

Comparing the old and new scenario reduction technique
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

 

Objective of scenario reduction: )()~(min *xFxF 

Scenario Reduction
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

 

Xt

 

= Xt-1

 

+ t

 

-AR(1) model, t = 1,…, 4 

SAA Approach


 

Sample from (1

 

, 2

 

, 3

 

, 4

 

) and solve the sample 
average approximation problem

SAA & Reduction Approach


 

Sample from (1

 

, 2

 

, 3

 

, 4

 

), and do scenario 
reduction over all sample paths

Our approch


 

Generate representative mass points from (1

 

, 2

 

, 3

 

, 
4

 

) 


 

Sample from 1

 

and do scenario reduction

 
sample from 2

 

and do scenario reduction

 
………………………………………………..


 

The advantage is less scenario-reduction effort.


 

Proven that under certain conditions, this approach 
and SAA & Reduction approach are equivalent.
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Scenario Tree Generation
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Scenario Tree Generation
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Xt

 

= Xt-1

 

+ Normal(0,5)  -AR(1) model, t = 1,…, 4 Optimal value of SAA 
problem for 
increasing sample 
size (with and without 
scenario reduction). 
Two graphs for two 
independent batches
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

 

We use COIN-BCP, to implement branch-cut-price, COIN-CGL to generate 
valid inequalities, COIN-OSI and Cplex

 

to solve the master problem and some 
of the pricing problems, and dynamic programming to solve the pricing 
problems.


 

We use four numbers to code a problem instance. First two numbers represent 
the scenario tree, third number represents the number of units, and last number 
represents the initial status of units. 24-111-1536-2, for example, means an 
instance with 24 time periods, 111 scenarios, 1536 units, and second set of 
initial statuses.


 

We run the serial algorithm on an Intel Xeon E5410 processor with 2.33 GHz 
speed and 4 GB memory. We run the parallel algorithm on a 32-processor 
cluster arranged in four groups of eight SMP processors of this type. We solve 
the problems to a 0.01% optimality gap, unless otherwise stated,

 

and report the 
solution times in CPU seconds.


 

We test several strategies


 

Comparing decompositions


 

Weighted column generation


 

Combining with Lagrangian

 

relaxation


 

Stabilization


 

Primal heuristics


 

Valid Inequalities

Branch-Cut-Price Decomposition
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Branch-Cut-Price vs. Cplex
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Intra-Node Parallelization

15



Hybrid Parallelization
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Solving Large Instances with Parallelization
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Optimal Power Flow
-

 
Security-Constrained OPF

-
 

OPF under uncertainty



19

SCOPF Problem Formulation



 

Security-constrained OPF: it minimizes a given objective function while ensuring 
that the operating constraints are satisfied in both the normal and all the 
contingency states



 

Major difficulties: large-scale, nonlinear, nonconvex, and possibly discrete 
variables


 

Trying to solve this problem directly by imposing simultaneously

 

all post-

 
contingency constraints would lead to prohibitive memory requirements and CPU 
times

min f(u0

 

) Objective

g0

 

(x0

 

, u0

 

) ≤

 

0 Normal case: pre-contingency operation

gc

 

(xc

 

, u0

 

) ≤

 

0 Preventive: control variables u

 

not rescheduled

gc

 

(xc

 

, uc

 

) ≤

 

0 Corrective: reschedule u

 

to remove post-contingency violation 

|uc

 

- u0

 

| ≤

 

Δmax
Ramp rates condition
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Solution Methods



 

Branch-and-bound based on Lagrangian duality
-

 

Able to find the globally optimal solution
-

 

The lower bound is computed from Lagrangian duality, while the feasible set 
subdivision is obtained by rectangular or ellipsoidal bisection



 

Benders decomposition
-

 

Decompose into a master problem and subproblems, where subproblems

 
check solution feasibility for the master problem

-

 

Derive a new cut that exploits the special structure of problem 
-

 

Handle the nonconvexity

 

by the adaptive cuts  



 

Alternating direction methods of multipliers (ADMM)

-

 

A class of first-order primal-dual algorithms based on the augmented 
Lagrangian method

-

 

By introducing auxiliary variables for control variables, ADMM decomposes the 
original problem into a number of subproblems

 

related to each contingency 



Exact Methods with Rectangular Model
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Exact Methods with Rectangular Model
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Lagrangian Function
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Inner Subproblems
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Benders Decomposition
Feasibility check
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SCOPF

Cut Generation: aTx

 

≤

 

b



Benders Decomposition

Feasibility check
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SCOPF



Benders Decomposition

Feasibility check

Cut Generation
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SCOPF
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Adaptive Benders Cut



 

Suppose that c(x) is a valid
cut for     , then

is also a cut for any                .


 

is chosen by a constraint infeasibility measure for     : the value is large,              
we select        close to 1, otherwise       is close to 0



 

Speedup enhancement: Switch off a contingency c if it was feasible for incumbent
–

 

It is likely that no cuts are generated for later 
–

 

At the end, we need to verify that final     is feasible for contingency c

x

x*
x

( ) ( ) 0c x c x 

x

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ADMM for SCOPF

,min { ( ) ( ) : , , }x y f x g y Ax By b x X y Y    
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 ADMM is applicable to the problem with block separable structure 

where 2
0 0 0 0 0 0 0( , , ) (x ,u ) (u u ) 2 || u u ||T
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ADMM for SCOPF
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Let us consider

We reformulate SCOPF by introducing slack variables u0c
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Numerical Results in Serial Implementation



Estimated Running Time in Parallel Implementation

Par.Time

 

= total time of base case subproblems

 

+  efficiency factor*(total time 
of contingency subproblems)/number of processors 
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Stochastic OPF: Problem Formulation



 

We model two stages of decisions separated by, say, 5 ~ 15 mins


 

Second stage recourse provided by expensive, fast-response energy sources    
Pin, Qin

 

like spotmarket, peaker

 

generators, demand response etc.



 

The first stage of the two-stage problem



 

The 2nd stage of the two-stage problem

min ( ) . ( )

s.t. constraints for 1  stage variables ,

g g

g

f P p PQ

st PQ V

 






, ,

, ,

( ) min ( ) ( )
                 s.t. constraints for 2  stage variables , ,

g in out

in out

PQ g P h P
nd PQ PQ V

  
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  
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Algorithms



 

Assumption 1: For every PQg

 

[Pmin

 

, Pmax

 

]×[Qmin

 

, Qmax

 

], the 2nd

 

stage 
problem is feasible



 

Assumption 2: The dual of 2nd

 

stage problem has a zero duality gap



 

We solve a sequence of lower approximations of the master problem by 
augmenting a piecewise-linear approximation of      . Specifically, we generate 
and use a set of subgradient

 

of      . 



 

The kth

 

iterate solves


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Numerical Results

35



 

Our proposed outer-approximation algorithms converge quickly to the 
optima


 

Theoretically, we can show that these decomposition schemes find the 
globally optimal solutions for the nonconvex

 

optimization problems



Thank you for your attention!
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