Applying High Performance Computing to Multi-Area Stochastic Unit Commitment for Renewable Integration

FERC 2012 Software Conference

Anthony Papavasiliou, Shmuel Oren
Department of Industrial Engineering and Operations Research
U.C. Berkeley

June 26, 2012
Outline

1. Introduction
2. Model
3. Results
Motivation

Increased computational burden in power systems operations due to:

- renewable penetration and
- demand response integration

Potential applications:

- stochastic optimization
- robust optimization
- topology control
Want to quantify sensitivity of:
- unit commitment policy
- duality gaps
- cost performance
on number of scenarios.
Validation Process

- Stochastic model (renewable energy, demand, contingencies)
- Scenario selection
- Stochastic UC
 - Representative outcomes
 - Stoch < Det?
 - Outcomes
- Economic dispatch
 - Min load, startup, fuel cost
 - Slow gen UC schedule
- Deterministic UC
 - Slow gen UC schedule
 - Outcomes

A. Papavasiliou, S. Oren
Parallel Stochastic Unit Commitment
(UC) : \(\text{min} \sum_{g \in G} \sum_{t \in T} (K_g u_{gt} + S_g v_{gt} + C_g p_{gt}) \)

s.t. \(\sum_{g \in G_n} p_{gt} = D_{nt} \)

\(P^-\ u_{gt} \leq p_{gt} \leq P^+\ u_{gt} \)

\(e_{lt} = B_l(\theta_{nt} - \theta_{mt}) \)

\((p, e, u, v) \in \mathcal{D}\)
Stochastic Unit Commitment Model

\[(SUC) : \min \sum_{g \in G} \sum_{s \in S} \sum_{t \in T} \pi_s (K_g u_{gst} + S_g v_{gst} + C_g p_{gst}) \]

s.t. \[\sum_{g \in G} p_{gst} = D_{nst}, \]
\[P_{gs}^- u_{gst} \leq p_{gst} \leq P_{gs}^+ u_{gst} \]
\[e_{lst} = B_{ls} (\theta_{nst} - \theta_{mst}) \]
\[(p, e, u, v) \in D_s \]
\[u_{gst} = w_{gt}, v_{gst} = z_{gt} \]
Lagrangian Decomposition Algorithm

\[L = \sum_{s \in S} \pi_s \left(\sum_{g \in G} \sum_{t \in T} (K_g u_{gst} + S_g v_{gst} + C_g p_{gst}) \right) \]

\[+ \sum_{g \in G_s} \sum_{t \in T} (\mu_{gst} (u_{gst} - w_{gt}) + \nu_{gst} (v_{gst} - z_{gt})) \]
1. Generate a sample set $\Omega_S \subset \Omega$, where $M = |\Omega_S|$ is adequately large. Calculate the cost $C_D(\omega)$ of each sample $\omega \in \Omega_S$ against the best deterministic unit commitment policy and the average cost $\bar{C} = \frac{1}{M} \sum_{i=1}^{M} C_D(\omega_i)$.

2. Choose N scenarios from Ω_S, where the probability of picking a scenario ω is $C_D(\omega)/\bar{C}$.

3. Set $\pi_s = C_D(\omega)^{-1}$ for all $\omega_s \in \hat{\Omega}$.

A. Papavasiliou, S. Oren
Parallel Stochastic Unit Commitment
Wind Production Model

- Relevant literature: (Brown et al, 1984), (Torres et al., 2005), (Morales et al, 2010)

- Calibration steps
 1. Remove systematic effects:

 \[
 y_{kt}^S = \frac{y_{kt} - \hat{\mu}_{kmt}}{\hat{\sigma}_{kmt}}.
 \]

 2. Transform data to obtain a Gaussian distribution:

 \[
 y_{kt}^{GS} = N^{-1}(\hat{F}_k(y_{kt}^S)).
 \]

 3. Estimate the autoregressive parameters \(\hat{\phi}_{kj} \) and covariance matrix \(\hat{\Sigma} \) using Yule-Walker equations.
WECC Model

- 124 units (82 fast, 42 slow), 225 buses, 375 transmission lines
Unit Characteristics

<table>
<thead>
<tr>
<th>Type</th>
<th>No. of units</th>
<th>Capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>2</td>
<td>4,499</td>
</tr>
<tr>
<td>Gas</td>
<td>88</td>
<td>18,745.6</td>
</tr>
<tr>
<td>Coal</td>
<td>6</td>
<td>285.9</td>
</tr>
<tr>
<td>Oil</td>
<td>5</td>
<td>252</td>
</tr>
<tr>
<td>Dual fuel</td>
<td>23</td>
<td>4,599</td>
</tr>
<tr>
<td>Import</td>
<td>22</td>
<td>12,691</td>
</tr>
<tr>
<td>Hydro</td>
<td>6</td>
<td>10,842</td>
</tr>
<tr>
<td>Biomass</td>
<td>3</td>
<td>558</td>
</tr>
<tr>
<td>Geothermal</td>
<td>2</td>
<td>1,193</td>
</tr>
<tr>
<td>Wind (deep)</td>
<td>10</td>
<td>14,143</td>
</tr>
<tr>
<td>Fast thermal</td>
<td>82</td>
<td>9,156.1</td>
</tr>
<tr>
<td>Slow thermal</td>
<td>42</td>
<td>19,225.4</td>
</tr>
</tbody>
</table>
Sensitivity of Optimal Policy on Number of Scenarios

Table: Day-ahead reserve capacity (MW)

<table>
<thead>
<tr>
<th></th>
<th>S10</th>
<th>S50</th>
<th>S100</th>
<th>S1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>WinterWD</td>
<td>8846</td>
<td>8575</td>
<td>8885</td>
<td>8600</td>
</tr>
<tr>
<td>SpringWD</td>
<td>9173</td>
<td>8639</td>
<td>9077</td>
<td>8572</td>
</tr>
<tr>
<td>SummerWD</td>
<td>12185</td>
<td>12327</td>
<td>12261</td>
<td>12497</td>
</tr>
<tr>
<td>FallWD</td>
<td>10039</td>
<td>10182</td>
<td>9771</td>
<td>9989</td>
</tr>
<tr>
<td>WinterWE</td>
<td>7700</td>
<td>8074</td>
<td>6978</td>
<td>7170</td>
</tr>
<tr>
<td>SpringWE</td>
<td>7588</td>
<td>7001</td>
<td>7105</td>
<td>7032</td>
</tr>
<tr>
<td>SummerWE</td>
<td>11041</td>
<td>10545</td>
<td>10795</td>
<td>10810</td>
</tr>
<tr>
<td>FallWE</td>
<td>9476</td>
<td>8669</td>
<td>8665</td>
<td>8637</td>
</tr>
<tr>
<td>Average</td>
<td>9744</td>
<td>9542</td>
<td>9538</td>
<td>9485</td>
</tr>
</tbody>
</table>
Unit Commitment: Winter Weekdays

A. Papavasiliou, S. Oren

Parallel Stochastic Unit Commitment
Unit Commitment: Spring Weekdays
Unit Commitment: Summer Weekdays

![Graph showing power generation over time for different stochastic models.]

- **stoch10**
- **stoch50**
- **stoch100**
- **stoch1000**
Unit Commitment: Fall Weekdays

![Graph showing unit commitment results](image)

- stoch10
- stoch50
- stoch100
- stoch1000

A. Papavasiliou, S. Oren
Parallel Stochastic Unit Commitment
Unit Commitment: Winter Weekends

A. Papavasiliou, S. Oren

Parallel Stochastic Unit Commitment
Unit Commitment: Spring Weekends

A. Papavasiliou, S. Oren

Parallel Stochastic Unit Commitment
Unit Commitment: Summer Weekends

A. Papavasiliou, S. Oren
Parallel Stochastic Unit Commitment
Unit Commitment: Fall Weekends

A. Papavasiliou, S. Oren
Parallel Stochastic Unit Commitment
Sensitivity of Bounds on Number of Scenarios

Table: Lower and Upper Bound ($1000s$)

<table>
<thead>
<tr>
<th></th>
<th>S10</th>
<th>S50</th>
<th>S100</th>
<th>S1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>WinterWD</td>
<td>(254, 325)</td>
<td>(100, 169)</td>
<td>(-165, -93)</td>
<td>(-180, -105)</td>
</tr>
<tr>
<td>SpringWD</td>
<td>(1073, 1123)</td>
<td>(135, 28)</td>
<td>(97, 154)</td>
<td>(115, 164)</td>
</tr>
<tr>
<td>SummerWD</td>
<td>(-367, -234)</td>
<td>(48, 87)</td>
<td>(187, 304)</td>
<td>(-76, 62)</td>
</tr>
<tr>
<td>FallWD</td>
<td>(-146, -45)</td>
<td>(-292, 397)</td>
<td>(-191, -77)</td>
<td>(-108, 7)</td>
</tr>
<tr>
<td>WinterWE</td>
<td>(185, 295)</td>
<td>(-323, 413)</td>
<td>(-504, -411)</td>
<td>(-84, 17)</td>
</tr>
<tr>
<td>SpringWE</td>
<td>(668, 783)</td>
<td>(-121, 202)</td>
<td>(-228, -153)</td>
<td>(52, 128)</td>
</tr>
<tr>
<td>SummerWE</td>
<td>(-57, 99)</td>
<td>(438, -283)</td>
<td>(-150, 93)</td>
<td>(-108, 50)</td>
</tr>
<tr>
<td>FallWE</td>
<td>(810, 913)</td>
<td>(-530, 624)</td>
<td>(-304, -207)</td>
<td>(-92, 7)</td>
</tr>
</tbody>
</table>
Table: Performance Improvement as a Function of Gap Improvement

<table>
<thead>
<tr>
<th>Policy</th>
<th>Gap ($)</th>
<th>Cost ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S10</td>
<td>97827</td>
<td>7.303</td>
</tr>
<tr>
<td>S10*</td>
<td>70559</td>
<td>7.300</td>
</tr>
<tr>
<td>S50</td>
<td>92413</td>
<td>7.308</td>
</tr>
<tr>
<td>S50*</td>
<td>62190</td>
<td>7.286</td>
</tr>
<tr>
<td>S100</td>
<td>93711</td>
<td>7.299</td>
</tr>
<tr>
<td>S100*</td>
<td>67069</td>
<td>7.289</td>
</tr>
<tr>
<td>S1000</td>
<td>98485</td>
<td>7.301</td>
</tr>
</tbody>
</table>
Running Times

A. Papavasiliou, S. Oren
Parallel Stochastic Unit Commitment
Conclusions

- **Validation of scenario selection algorithm:** The importance sampling scenario selection algorithm with 10 scenarios performs as well as a stochastic unit commitment model with 1000 scenarios.

- **Decreasing the duality gap versus increasing the number of scenarios:** Reducing the duality gap seems to yield superior benefits relative to adding more scenarios.

- **Scaling of running times:** The speedup benefits of parallelization seem to be limited beyond 20% of the problem size.
Thank you

Questions?

Contact: tonypap@berkeley.edu

http://www3.decf.berkeley.edu/~tonypap/publications.html