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From real time dispatch to 
planning 

Mixed Integer Nonconvex Program 
maximize c(x)
subject to g(x) ≤

 
0,

Ax   ≤
 

b
l ≤

 
x ≤

 
u,

some x є
 

{0,1}
c(x), g(x) may be non-convex

I didn't know what I would find there
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AC Optimal Flow Problem  

“DC OPF” formulations linearize the nonlinearities .   

 

‘ACOPF’ formulation is a continuous nonconvex optimization problem  

 Most nonlinear solvers find at best local optimal solutions  

 

Linear IV approximation to ACOPF  

If promising, it can be embedded in binary formulations:  

 unit commitment models, and optimal topology models.  

allows the use of exceptionally fast and robust MIP algorithms  
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Power Flow Equations 

Polar Power-Voltage: 2N nonlinear equality constraints  

 Pn = ∑mk VnVm(Gnmkcosθnm + Bnmksinθnm)   

Qn = ∑mk VnVm(Gnmksinθnm - Bnmkcosθnm)  

Rectangular Power-Voltage: 2N quadratic equality constraints 

 S = P + jQ = diag(V)I* = diag(V)[YV]* = diag(V)Y*V*   

Rectangular Current-Voltage (IV) formulation.  

Network-wide LINEAR constraints: 2N linear equality constraints 

 I = YV = (G + jB)(Vr + jVj) = GVr - BVj + j(BVr + GVj)  

 where Ir = GVr - BVj and Ij = BVr + GVj 
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Rectangular ACOPF-IV formulation.  

Network-wide objective function: Min c(P, Q, I, V)    (50) 

Network-wide constraint: I = YV        (51) 

Bus-specific constraints: 

 P = Vr•Ir + Vj•Ij ≤ Pmax  (54)  Pmin ≤ P = Vr•Ir + Vj•Ij (55) 

 Q = Vj•Ir - Vr•Ij ≤ Qmax (56)  Qmin ≤ Q = Vj•Ir - Vr•Ij (57) 

 Vr•Vr  + Vj•Vj ≤ (Vmax)2  (58)  (Vmin)2 ≤ Vr
 •Vr  + Vj•Vj (59) 

 (inmk)2 ≤ (imax
k)2  for all k   (60) 

 [θmin
nm ≤ arctan(vj

n/vr
n) - arctan(vj

m/vr
m) ≤ θmax

nm (61)] 

 Vr ≥ 0       (62) 



June 26, 2012 6

(51) are 2N linear equality constraints that apply throughout the 

network,  

(54) – (57) are quadratic and non-convex.  

(58) are convex quadratic inequality constraints, but  

(59) are non-convex quadratic inequality constraints.  

(61) could be eliminated and the problem becomes quadratic with 

linear network equations.   
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Generator and Load Constraints.  

The lower and upper bound constraints for generation and load are: 

 Pmin ≤ P ≤ Pmax  (24)   Qmin ≤ Q ≤ Qmax   (26) 

In terms of V and I, 

 Vr•Ir + Vj•Ij ≤ Pmax  (28)  Pmin ≤ Vr•Ir + Vj•Ij     (29)  

 Vj•Ir - Vr•Ij ≤ Qmax (30)   Qmin ≤ Vj•Ir - Vr•Ij  (31) 

(28)-(31) are non-convex constraints.  
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Voltage constraints.  

in rectangular coordinates 

 (vr
m)2 +(vj

m)2 ≤ (vmax
m)2      

 (vmin
m)2 ≤ (vr

m)2 + (vj
m)2        

voltage magnitude bounds are generally in the range, [.95, 1.05].  

high voltages are often constrained by circuit breakers capabilities.  

Low voltage constraints can be due operating requirements of motors 

or generators.  
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Line Flow Constraints  

Power Line Flow Constraints.  

 (sr
nmk)2+ (sj

nmk)2 = |snmk|2 ≤ (smax
k)2  (37) 

Current Line Flow Limitations.  

 (irnmk)2 +(ijnmk)2 ≤ (imax
nmk)2     (38) 

convex quadratic and isolated to the complex current at the bus.  

 

(38) appears to be the better choice 
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The Linear Approximations to the IV Formulation 

We take three approaches to constraint formulation.  

If the constraint is nonlinear,  

 use the first order Taylor series approximation  

 updated at each LP iteration 

If the constraint is convex, use outer approximation 

 add linear cutting planes to remove infeasible points 

 

Can we guarantee feasibility with this approach?   
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Preprocessed Linear Voltage and Current Constraints.  

 (vr
m)2 +(vj

m)2 ≤ (vmax
m)2       

vj

vr

(Vr = Vj)

π/4

 

vj

vr

(Vr = Vj)

π/4

 

Can add any number of preprocessed constraints before iterating  

Current constraint set has no hole  
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Linear Voltage Approximations.  

a first order Taylor’s series approximation about (vr
n, vj

n) 

 vr
nvr

n
  + vj

nvj
n  ≈ 2vrvr

n
 + 2vj

nvj
n-vr

nvr
n - vj

nvj
n     

Since higher losses occur at lower voltages, the natural tendency of 

the optimization will be toward higher voltages. 

vj

vr

(Vr , Vj)
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Non-Convex Minimum Voltage Constraints.   

 (vmin
m)2 ≤ (vr

m)2 + (vj
m)2         

1. non-convex, the linear approximation is problematic.  

2. approximation and eliminates parts of the feasible region  

3. 

vj

vr

(Vr , Vj)

   

Vr

Vi

  

This is probably not a good idea, but maybe 
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Real Power Constraints.  

At each generator or load bus dropping the bus index 

First order approximation around vr, ir, vj, ij 

 p≈ = vrir + vjij + vrir + vjij - (vrir + vjij)     

 p≈min - p≈minrelax ≤ p≈ ≤ p≈max + p≈maxrelax 

Hessian has the off-diagonal identity matrices  

 0 0 1 0  vr 
 0 0 0 1  vj 
 1 0 0 0  ir 
 0 1 0 0  ij 
 Eigenvalues: 2 are 1 and 2 are -1  
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Reactive Power Constraints.  

At each generator or load bus dropping the bus index  

First order approximation around vr, ir, vj, ij  

 q≈ = vjir - vrij - vrij + vjir  - (vjir - vrij)   

 q≈min - q≈minrelax ≤ q≈ ≤ q≈max + q≈maxrelax 

The Hessian has positive and negative identity matrices  

  0 0 0 -1  vr 
  0 0 1  0  vj 
  0 1 0  0  ir 
 -1 0 0  0  ij 
Eigenvalues: 2 are 1 and 2 are -1. 



June 26, 2012 16

Computational experience 

MINOS, CONOPT, IPOPT, KNITRO SNOPT 

All nonlinear except Knitro find the ‘optimal’ solution 

Ten random starting points, the average cpu time 

 14 bus: GUROBI < all nonlinear solvers 
 30 bus: GUROBI < 2 of 5 nonlinear solvers 
 57 bus: GUROBI < all nonlinear solvers 
 118 bus: CPLEX and GUROBI < all but one nonlinear solver 
 300 bus: CPLEX and GUROBI <all but two nonlinear solver 
 

For the naïve approximation and implementation,  

LP approach is faster or competitive with nonlinear solvers  


	Slide Number 1
	From real time dispatch to planning 
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

