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Outline

*+* Key challenges to reliable and efficient integration of renewable
resources and responsive demand

+»* State of the art solution: DYMONDS-based DC OPF [1]
" |nternalizing the ramp-rate limits into bids (DYMONDS)
= integration of DYMONDS and DC OPF

*** Proposed approach: Integrate DYMONDS into AC OPF.

--reliability/efficiency coordination using multiple criteria in
AC OPF [2-7]

—-illustration of using AC OPF for ensuring reliable and efficient
NY and NE grid delivery; multiple performance metrics

** Preliminary conclusions and open questions
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Key challenge

L)

** Managing both ramp-rate limits and optimizing voltages in a
complex power grid

--needed to integrate renewable resources
--very tough computational problem

** Nonlinear optimization using AC OPF —computationally tested on
very large systems; for several performance objectives relevant for
reliable and efficient resource management [3,4]

** Ramp-rate limited DC OPF for integrating wind power and
responsive demand —proof of concept shown [1,2]; dynamic
monitoring and decision systems (DYMONDS) concept [5].

** Key new question: Can one combine the two near-optimally?
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Nonlinear optimization using AC OPF

*** Today’ operating and planning practice: Reliability
ensured by extensive power flow-based analyses

*** Very little reliance on corrective adjustments of
available resources as operating conditions change

*** Real power scheduled to meet forecast demand

*** Voltage-controllable equipment is generally not
adjusted when real power is scheduled

** Both reliability and efficiency can be significantly
improved if voltage is optimized on generators,
controllable transformers, capacitor banks and FACTS
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Corrective Resource Management—key to managing

intermittency [6]

***Adjust resources as conditions change to

guarantee a
and
extent possib

| the time” while maximizing
minimizing pollution to the
e.

***Must operate resources within their limits:

- thermal and

voltage equipment limits.

- system delivery (voltage and stability) limits.

**The best performance is obtained by adjusting
the most resources.
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Multiple Performance Objectives [6]

Reliability Efficiency

*Economic dispatching
*Reducing volatility of electricity
prices

*Enabling most economical
* Responding to contingencies and  {rgnsactions

/7

** Maintaining compact voltage
profile

<&

L)

» Serving the greatest load

L)

<&

L)

L)

intermittent resources -Eliminating conservative proxy
*» Balancing power flow and transfer limits

maintaining operation within the « Avoiding Reliability Must Run

limits (RMR) rules

* Implementing responsive demand
*Loss minimization
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Effects of voltage control on efficiency in NE [3]

Nocomml | P | Fg, Vo | Fg, Taps | Pg, Vi, Taps
Base Cage fogsn | - - - -
Nonmtal Operaton — | S6I2669 | 605,135 | S606712 | S 604301
Worst Case (N - 2) Contngeney | — | not easile | §618731 | motfeasble | §614253
TABLE]

ECONOMIC DISPATCH OUTCOMES AS A RESULT OF VOLTAGE OPTIMIZATION USED
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Reliability first, efficiency second

e ISO-NE sends to the owners of voltage controllable
equipment anticipated power demand and generation.

e The equipment owners perform MXV with respect to the
controls (V. T'aps) only. This optimization results in the
acceptable voltage ranges bounded by upper and lower
triangle symbols 1n Figure 2. The controlled equipment
15 frozen at the optimal values. The range of acceptable
voltages and the optimized (V. T'aps) are passed on to
the ISO.

e The ISO-NE optimizes its real power generation Fg to
minimize the total generation cost within the ranges of
voltages and for the optimized (V. T'aps) given by the
equipment owners.
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Reconciling reliability and efficiency

“**Assuming perfect information by the ISO-
NE, a centralized AC OPF performed subject
to all constraints

--Step 1 The most reliable voltage profile
using Minimize Extreme Voltage (MXV)
shown in Figure 2.

-Step 2 Re-optimize real power while
maintaining voltage within the most

reliable limits
*THE COST OF RELIABILITY : DIFFERENCE BETWEEN

--generation cost resulting from performing Steps 1 and
2 ($643,848); and,
--generation cost obtained using single optimization of
both real power and voltage subject to 0.98-1.02pu constraints
£r56 ($604,391)" Carnegie Mellon ¥
e



Interdependence of reliability and efficiency

Contingency? | Voltage Range | Thermal Limit Generation Cost | Generation
[5/Hc] Cost Increase
No 0.98-1.02 Rate A (Normal) 1,110,290 Benchmark
Yes 0.98-1.02 Rate A 1,145554 3 2%
Yes 0.95-1.05 Rate A 1,120,197 0.9%
Yes 0.98-1.02 Rate B (LTE) 1,114792 0.4%
Yes 0.93-1.0% Rate B 1,050,022 -2.7%

Fig. 3. Effects of Voltage Limits on Generation Cost Durning A Severe
Contingency
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Potential reliability/efficiency coordination in NYCA

*»Different dispatch needed for implementing the
most economic dispatch than for delivering most
power to NYC [5]

**Thermal limits are less pronounced than voltage-
related limits

‘*There exist voltage-related operating constraints
to
--the most economic dispatch
--delivering clean hydro power from Canada to NYC

--transferring large amount of power across Central-
East interface

--wind power will make the delivery even more
challenging
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NYISO High Voltages (EDD RUN=2)
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Fig_ 4. Companson of the Base Case and Optumized Voltage by Adjusting
AVERs for economic Dispatch
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Enn 0
NYC Load
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Fig. 5. A comparnison of NYC Load and Interface Flows Across Various
Optimizations
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Management of inter-temporal constraints under
uncertainties —the problem of ramp-rates [1,5,7]

** Conventional system operation
= Centralized decision making
+* SO knows and decides all

= Not proper for future electric energy systems

**Too many heterogeneous decision making components
: DGs, DRs, electric vehicles, LSEs, etc.

¢ Dynamic Monitoring Decision-making System (DYMONDS)

= Distributed decision making system

¢ Distributed optimization of multiple components = computationally
feasible

= |ndividual decisions submitted to ISO (as supply/demand bids)
s Individual inter-temporal constraints internalized
+* Market clearance and overall system balanced by ISO

3
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Managing wind power—smarter way

***Actively control the output of available
intermittent resources to follow the trend of
time-varying loads.

***By doing so, the need for expensive fast-start
fossil fuel units is reduced. Part of the load
following is done via intermittent renewable
generation.

**The technique used for implementing this
approach is called model predictive control
(MPC).

s*Implicit value of storage
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Basic idea of minimally coordinated self-dispatch—
DYMONDS

¢ Distributed management of temporal interactions

*»» Different technologies perform look-ahead decision
making given their unique temporal and spatial
characteristics and system signal (price or system net
demand); they create bids and are cleared by the
layers of coordinators

** Putting Auctions to Work in Future Energy Systems

** We illustrate next a supply-demand balancing process
in an energy system with wind, solar, conventional
generation, elastic demand, and PHEVs.
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DYMONDS-enabled Physical Grid [5]
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Centralized MPC —-Benchmark [1]

Predictive Model and

A U* — >|<7 *’ e : * B

I—(k) MPC Optimizer {ug, v un_1}

B (k) *

~ UE") u, : Output vector of all
max .

Psolar (k) Electric Energy System generators at time step k

*»*Predictive models of load and intermittent
resources are necessary.

***Optimization objective: minimize the total
generation cost.

“*Horizon: 24 hours, with each step of 5 minutes.
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Problem 3A: Centralized MPC-based Dispatch with Inelas-
tic Demand

K
Solve :n;iPZIIZ‘;{Gi{PGi (k))),i e G (39)

st.» Pg(k)=> L.(k),i€G.z€ Z; (40)

L.(k)= f.(L.(k—1)),z € Z; (41)
PEe (k) = g; (P& (k — 1)) (42)
PE (k) = hyi (PEY™ (K — 1)); (43)
Gy < Po, (k) < Pgy™,j € Gy (44)
PEm < Pg, (k) < PE™,ic G\ G; (45)
|Pe,(k+1) — Pa, (k)| < Ri,i € G;and, (46)
F (k)| < Fma=, 47
£ E R < B
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Problem 3B: Centralized MPC-Based Dispatch with Elastic
Load

K

Solve : }_gmn ) ) :{C‘i(Pcf(k)}} — Z(Bz (L.(k)))).

G 1 ieG :eZ

(48)

s.t. Z P, (k Z L.( (49)

1els zEX

PEe (k) = g;(PE* (k — 1)), 7 € Gy; (50)

P,_"’{ff”{k} — gj(PE:m{k —1)),r € G,; (51)

P < P, (k) < PE™,5 € Gy (52)

PE™ < Pg, (k) < PE™=,i € G\ Gy (53)

Po.(k+1)— Pe. (k)| < Ri,i € G;and, (54)

[F'(k)| < F™O. (55)

h?ﬂ lJﬂ[‘llttﬁlljiTlﬁllllll {t}
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System Operator (Static SCED)
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Fig. 3. Required information exchange for DY MONDS-based dispatch.




DYMONDS for MPC-based supply function
computation-

QY1) Ak+2) - Ak 4+ K)]

T

k+I
Solve; AnEx, D Ak (P, (k) = (Cil Pa, (k) (44)
“ Fet
st PE(k) = gi(PE(k - 1)) (45)
PEin(gy = by (PR (K — 1)) (46)
P, (k+1) ~ Po,(K)| < Riand (47
Pmm < PG;:(‘EL:} < ﬁﬁ_}ttm (48)
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DYMONDS Simulator
IEEE RTS with Wind Power

©*20% / 50%
penetration to
the system [2]

—Hre

6
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DYMONDS Simulator
Impact of price-responsive demand

’Buzz
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DYMONDS Simulator
Impact of Electric vehicles
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Optimal Control of Plug-in-Electric Vehicles:
Fast vs. Smart

Fast Charging Goal of Smart Charging
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AC OPF +DYMONDS -
Proof of concept on 14 bus system

(G) ceneraTons

0] [450] © gans s
0 60 " T\j‘k
PN =o| PRI =|143 '
0 160
0 1100 |
0 10]
40 >0
Qg\in: 0 | QG =40
6 24
-6 |24 « Gen. cost
] (quad,linear):
** No line flow limits — G1:(0.187,7)
** Vmin=0.94, Vmax=1.06 at all buses — G2:(0.133, 11.67)
% Predicted price: $20/MWh in 24 hours - G3:(0.116, 9.167)

<

3)

£r &

» Ramp rates of generators: 50MW/per hour

— G6: (100, -57.21)
— G8:({drnegigyllon




Load curve
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DYMONDS Communication

S(Pg,\)
Pgmin
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Active Power Generation: Centralized

vs. DYMONDS

Active power generation of G1
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Total Cost: Centralized vs. DYMONDS

Total cost of generation
7500 T T T T T T I
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Active Power Generation: DYMONDS
(ACOPF vs. DCOPF)
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Total Cost: DYMONDS (ACOPF vs.
DCOPF)

Total cost of generation
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Concluding remarks:
Rethinking limits to complexity

*** Impossible to characterize top-down all diverse
technologies

+»* Clear that today’ MPC algorithms not scalable as of
now;

*»* Typical approximation—LR w.r.t. time; assumes
hierarchical time scale separation of SCED and UC

** LR w.rt. to time questionable with persistent changes
in system inputs; complexity will grow with new
technologies (physics vs. binary decisions)

*** Need to carefully combine nonlinear characteristics of
the grid with the uncertain temporal complexities of
system users
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The challenge of implementing AC OPF

** Many off-line simulations performed in the last few years;
potential for reliability and efficiency enhancements

+** Close collaboration on analyzing potential benefits has
led in three control centers to report their assessment of
possible benefits [3]

** Many open questions concerning responsibilities for
voltage support in the changing industry

*** Need regulatory incentives to reconcile reliability and
efficiency objectives and support coordinated voltage
control at value to the right parties (DSOs, TSOs, ISOs,
producers, LSEs)
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