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Outline

X Major challenges and opportunities

-- defining efficiency metrics for systematic use by all
--assessing multiple value of a specific technology within a given system [1-8]

--designing IT infrastructure to harvest hidden efficiencies across transmission
and distribution systems (possible) [6-8]

--designing market rules to support harvesting hidden efficiencies [9-11]

» A method to consider generation and demand using the same
efficiency metrics

** An IT-enabled method for assessing relative contributions of
central generation and DERs using the same efficiency metrics;
distribution system examples.

» An IT-enabled method for integrating efficiency effects of DERs in
the existing electricity markets; the key role of aggregators;
examples. (llic, Wed presentation on seams solutions)

\/

% Concluding remarks ;
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Efficiency metrics for systematic use by all?

** Multiple values brought by different technologies [2]

** Physical efficiency of stand-alone components (generation,
demand)

+*»* Physical efficiency due to loss delivery savings

¢ Physical efficiency due to reduced reserve requirements (reliability
reserves)

+** Physical efficiency due to temporal shifts during normal operations
(peak load shaving)

*»* Economic efficiency in electricity markets (spot and capacity)
** These are not additive. System-dependent.
** Tradeoffs defined by the system users, not by the hard constraints.

** Need a systematic method for evaluating. 3
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Physical efficiency due to loss delivery savings

*¢* A small IEEE 30 bus system (50% loss reduction by placing DERs at
the right locations and optimize real power generation schedules
and voltage support); 1.2-1.4 efficiency estimate for this case
(1.2MW of central generation can be displaced by 1MW of DGs)
(Masoud Nazari, PhD EPP CMU, 2012) [3]

s Effect of losses is relatively small. Should not assume that scaling up
the efficiency factor of 1.2-1.4. for the entire existing central
generation

+* Extensions on small real-world islands [4]
¢ Economic dispatch generally results in much higher losses [5]

¢ Physical (delivery) efficiency not aligned with economic efficiency
objectives [5]

. 4
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Physical efficiency due to reduced reserve
requirements (reliability reserves)

**These are key and major and should be
understood when capacity markets are
designed.

**Siripha Junlakarni (PhD EPP CMU, llic advisor)

**Prepared an important example for today’s
presentation; An extensive treatment of this
example in [6,7].

5
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IEEE RBTS BUS 2

Normally Open Switch \

-~

Type of customiZis | Liability cost/MW [1]

Small user Ji $0
Large user fi., $2,000

Industrial $21,000

6
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Load profiles
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Peak Load

Total Peak Load

Peak Load with DER
(MW) (MW)
Area-1 7.39 5.76
Area-2 10.26 4.76

Marginal Cost
Coal $50
Ol $200
Wind $0
Gas $130
Nuclear $10
o Carnegie Mellon ¥



Fault Types

¢ Probability of a fault occurring in the test system = 0.001

0.10

0.05

8758.56 hr 0.934 hr 0.443 hr
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Demand Response (DR) Agreements

Small users agree to get interrupted

« Large users reduce power usage up to
20%

* |ndustrial users can not be interrupted
(100% power supply required)

« Users participating in demand response
program are willing to disconnect their
loads (assuming sufficient incentives)

« Liability cost is applied when customers
are not supplied load as they expect
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Solution-1: Central Generation
I Jh

i -~ P,G2 = Peak Load,sub-2 +
Peak Load, sub-1, reserve

- 7.39 MW
i P.G1 = Peak Load sub-1 +
l\\l Peak Load, sub-2, reserve
17.65 17.65
0 0
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Solution-2: Demand Response

Al st dlln sl « Small users agree to
- ? ?//é disconnect
- [ g " « Large users agree to reduce
@_@ ( power usage 20%
. g AR % - 10.26 MW
i i\\é i P,G2 = Peak Load,sub-2 +
\ W 0.8*(Peak Load of Large user,

sub-1, reserve) + Peak Load of

il %/T % ———————————————————— .|
5 ’ : Industrial, sub-1, reserve
CORUDS B * :\ S

i
- p, AR y 1 17.39 MW
. i\\é i P,G1 = Peak Load,sub-1 +
8 8 0.8*(Peak Load of Large user,
= S BE W B sub- 2, reserve)
12.15 16.02
0 0
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Solution-3: Limit Capacity of DG, no Demand Response

dh @

?/;é I % ?T/E * DG capacity =5 MW
@@’ ¢ AU 1 10.26 MW
- (! A(R) / ]
i i\\é P,G2 = Peak Load,sub-2 +
N 8 8 (Peak Load,sub-1, reserve
d @ Gl M
A S 7 — l P,DG)
(o1~ 0 - A“i:j M > 7.39 MW
- A AR) A .
P,G1 = Peak Load,sub-1 — P,DG
Peak | oad, sub-?, reserve
12.65 12.65
5 0
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Solution-4: Limit Capacity of DG with Demand
Response

Small users agree to disconnect
Large users agree to reduce power

usage 20%
DG capacity = 5 MW
A /L® i
C @ i P-G2 = Peak Load,sub-2 +
@ @ JhJh b 0.8*(Peak Load of Large user,
- { %\. ““““““““ 1 sub-1, reserve) + Peak Load of
<:H 0 ; ; N Industrial, sub-1, reserve-P,DG
&f MR 4 7.39 MW

_. o /LQ
i\g i P-G1 = Peak Load.sub-1 — P.DG +
3

A 0.8*(Peak Load of Large user,
sub- 2, reserve)

7.15 11.02
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Reserve Margin and Curtailed Load

Solution-1: Central Generation vs. Solution-
2: Demand Response

5.50 5.67 1.63 2.92

P, Gen-1, Central =12.15 MW
P, Gen-2, Central = 16.02 MW
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Reserve Margin and Curtailed Load

Solution-1: Central Generation vs
Solution-3: Limit Capacity of DG without DR

5.00 0 5.00 0

P, Gen-1, Central = 12.65 MW
P, Gen-2, Central = 12.65 MW
P,DG=5MW

Note: DG used as a power reserve
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Reserve Margin and Curtailed Load

Solution-1: Central Generation VS
Solution-4: Limit Capacity of DG with DR

10. 50 5.67 6.63 2.92

P, Gen-1, Central =7.15 MW
P, Gen-2, Central =11.02 MW
P.DG=5MW
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Physical efficiency due to temporal shifts during normal

operations (peak load shaving)
Load Profile of Area-1 for 3 days

7.4h

B.5F

FPower (MW

55F

Load Profile of Area-2 for 3 days
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Load Factor of 2 Area

Total Energy 1 year (MWh)
Peak Load (MW) x 8760 hr

Load Factor =

Areg-1

Areg-2

52649.27

LF of Areal = 739 % 8760

d = (0.81

| ot Arany 6304418
OHATCa 2 =70.26 x 8760

= 0.70

-"-1- | | | | 1 1 1 1
0 1000 2000 3000 4000 0 S000  GBOOO 7000 @000 9000
Hour
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: « Peak at area-1 =7.39 MW
Al || o Peak at area-2 = 10.26 MW

Areg-2

« Thus, to cover the peak
demand, Gen-1 and Gen-2 will
have capacity around the peak
load

» Generator should has capacity
to supply loads around 70 -
90% “load factor”

4+ Instead of using all central
generation to supply the peak

0 o000 2000 s000 0 4000 SsD00 BoO0 Y000 S000  S000 Ioad, use DG to SUpp|y When
Haur peak demand occurs.

Central generation should have power: * Assume that central

« Gen-1=6 MW generation supplies 90% of
« Gen-2=8MW energy consumption.
[FSE Carnegie Mellon



~ oo

Power (MW)
= ¥y (=)

W

58

DG supplies peak load

Load Area-1 = = Gen-1 capacity 6 MW

X
\—

\//

1 2 3 45 6 7 8 91011121314 151617 1819 20 21 22 23 24

Hour

Reduce reserve
margin

Increase efficiency of
Gen-1

This is also true for
Gen-2
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Economic efficiency in electricity markets

Expected Generation Cost and Liability Cost in 1 year

)
on sek
enerd spof ot © R
Gen-1 Gen- DG | Solution-1 Solution-2 Solution-3 Solution-4
2

Nuclear Coal Wind| $3,703,684.68 $3,702,445.84 $3,243,397.47 S$3,242,158.62
Nuclear Coal Gas | $3,703,684.68 $3,702,445.84 $8,937,358.37 $8,936,119.53
Nuclear Wind Wind| $552,027.28 $550,834.49 $91,856.85 $90,664.06
Nuclear Wind Gas $552,027.28 $550,834.49 S$5,785,817.76 S$5,784,624.97
Coal Wind Wind| $2,658,007.58 $2,656,743.35 $446,031.28 $444,767.05
Coal Wind Gas | $2,658,007.58 S2,656,743.35 $6,139,992.18 $6,138,727.96

Gen-
Gen-1 2 DG |A(S1-S2) A(S1-S3) A(S1-S4)
Nuclear Coal Wind| $1,238.85  $460,287.22  S461,526.06
Nuclear Coal Gas | $1,238.85 ($5,233,673.69) ($5,232,434.84)
Nuclear Wind Wind| $1,192.79 $460,170.43 $461,363.23
Nuclear Wind Gas | $1,192.79 (S5,233,790.47) (S5,232,597.68)
Coal Wind Wind| $1,264.23 S$2,211,976.31 $2,213,240.54
Coal Wind Gas | $1,264.23 ($3,481,984.60) ($3,480,720.37)

Note: If the system has DG, DG supplies its full capacity

£E5E  Not consider the lowest price of ci;eneration Carnegie Mellon Y




Effects on Cumulative Economic Efficiency (Annual)

Solution-1 Solution-2 Solution-3 Solution-4
Gen-1=12.12
Gen-1 Gen-2 DG |Gen-1=17.65 MW MW San- SO | Eon-l =8k
G ze 76 | Camde Jamy | SOUE =SSN | EREZ=E Wi
MW DG =5 MW DG =5 MW

Nuclear Coal Wind $3,703,684.68 $3,702,445.84 $3,243,976.50 $3,242,355.87
Nuclear Coal Gas $3,703,684.68 $3,702,445.84 $4,226,268.15 $4,224,526.29
Nuclear Wind Wind $552,027.28 $550,834.49 $92,461.57 $90,864.99
Nuclear Wind Gas $552,027.28 $550,834.49 $1,254,666.07 $1,252,924.21
Coal Wind Wind $2,658,007.58 $2,656,743.35 $626,524.78 $624,900.61
Coal Wind Gas $2,658,007.58 $2,656,743.35 $3,275,305.51 $3,273,563.65

Note: ED

with Gen-

expensiv Gen1 2 DG | A(S1-S2) A(S1-S3) _ A(S1-S4)

e DG: it NuclearCoal Wind| $1,238.85 $459,708.19 $461,328.82

. Nuclear Coal Gas $1,238.85 ($522,583.47) (S520,841.61)

will be Nuclear Wind Wind| $1,192.79 $459565.71 $461,162.29

used to NuclearWind Gas | $1,192.79 ($702,638.79) ($700,896.93)

supply Coal Wind Wind| $1,264.235$2,031,482.80 $2,033,106.97

peak load Coal Wind Gas $1,264.23 ($617,297.92) ($615,556.06)
5e Carnegie Mellon



Adjust Capacity of Gen-1 and Gen-2

Solution-3 Solution-4
Gen- Gen-1 = 8MW Gen-1 =8 MW
Gen-1 5 DG | Gen-2=10 Gen-2=10 A(S1-S3) A(S1-S4)
MW MW
DG=5MW DG=5MW

Nuclear Coal Wind $3,243,385.02 $3,242,158.62] $460,299.67 $461,526.06
Nuclear Coal Gas $3,682,080.39 $3,680,655.98 $21,604.30 $23,028.70
Nuclear Wind Wind $91,851.71 $90,664.06| $460,175.57 $461,363.23
Nuclear Wind Gas $530,498.25  $529,080.46 $21,529.03 $22,946.83
Coal Wind Wind $446,005.58  $444,767.05 $2,212,002.00 $2,213,240.54
Coal Wind Gas $2,636,381.27 $2,634,813.99 $21,626.31 $23,193.59

£ESE CarnegieMellon ¥
R



Discussion

**Solution-1: central generation

= The system must have reserve power equal to the
load in the area where power outages occur

**Solution-2: Demand response

= Some customers are willing to disconnect
themselves, not necessary to have the same
reserve

" Thus, reserve power of central generation is less
than reserve power of solution-1

V>4 4 Carnegie Mellon ¥
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Discussion

*¢*Solution-3: DG without DR

**Solution-4: DG with DR

= Since we use DG to supply peak load, we can reduce
reserve power of central generation

" The economic outcome depends on DG O&M cost

--If the DG O&M is lower than the O&M of central
generation, these two solution are better of the
solution-1 (central generation)

--If the O&M of DG is higher than the O&M cost of
central generation, DER solution is not better than
solution-1

V>4 4 Carnegie Mellon ¥
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Discussion

*When reserve power of Gen-1 and Gen-2 is
increased (slide as shown in Slide 20

* The conclusions depend on DG O&M cost

% If the O&M cost of a DG is much higher than the O&M
cost of central generation, the solution-3 and 4 can be
worse than the solution-1

= Because

**the capacity of gen-1 and gen-2 can cover peak load, no
need to use DG to supply peak load

**Gen-1 and Gen-2 have some reserve power to supply loads
in another substation when losing one generation

V>4 4 Carnegie Mellon ¥
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Conclusions

**DG and DR can increase reliability of the
system

= DG effective in supplying loads when losing both
generators

= Existing capacity of generation can supply priority
customers because DR disconnects and decreases

some loads
**Use of DG as reserve margin depends on DG
O&M cost
V753 4 Carnegie Mellon (¥



Designing IT infrastructure to harvest hidden efficiencies in
distribution systems (Flores Island) [6]

45 e 44‘,
35t " -
a2 30 43 a® 42
4 a'l:ﬁﬂ
34 . 1
33 |a®» o8 5 DieselPlant W 1  Hydro Plant
“a—i 32 / K Line of Santa Cruz |
: p 17 - * At «Line of Santa Cruz I
18 " )i ' g ——Line of Ponta Delgada
* R 9 " Line of Airport
iy a2 Lpfe= a4
'If 19 21 £, 0 'Z‘h .‘ll‘I 0
Wind Plant ool _an  =d 13 11
voer |
36 SRS S Lﬂb':ui“ Load
N " Pl -1 Y C LD
39 40 24, -~ ) SRR o > A Private Load
37 38 o L & 6 16 ) Substation
l\l:'l : 25 Cable
=y A - -aw 27 " Normally open switch
26
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IT-enabled reliable efficiency: Problem formulation

* Minimizeinterrupting cost of the distribution network when faults occur

45
year X ( Z Pum;upplfed,i.,{' X ‘JCL,E) + (NG- Of Switch X ESW“ChJ
Fault=2

— Pynsuppliea,L,i - Unsupplied Load i
— ICy; : Interrupting cost of Load /
— Cswiten: Cost of switch ($5,000)
— year : Planning period (no. of year)
Note:
* This equation does not reflect the reality of planning
* Assumption about interrupting cost (the 1%t termin eq)
— A fault occurs at each bus (bus 2 to bus 45)

— When a fault occurs , customers will be supplied power for 1 hr
— Assume that there will be 44 faults occur (bus 2 to bus 45) in 1 year

* We canroughly estimate the interrupting cost for each year

t-Z-'&' Carnegie Mellon ¥
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CB Private Load Public Load  pggsible Normally Open Switches

1 2 3 4 5 6
L ;
! |
8 g 10 11 12 13 14 15 6 | |
L N o o :
% Wind ii
Hydro (i ¥ @ m“i : = 2:}@ | L L o 4 & i o i o 21=:~:
@7 e j —_'L. 28 2?: _____ ’—'E _____ ’—f _____ ’—‘E _____ .—f o E_l } .—‘L
s aTLTTTITTI T
- 7 3521@ alr-—'l' 3; alrglv_L B 40 ii i Exist
cae 41 12 4;@ 43@ l:lr L‘L L‘L@} L.L___ii__l Normally_
- — e ° @ ;E# ii Open Switch
S F=—=======—=====—============= |

Possible Normally Closed Switches
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Generation in Flores

***Diesel

= Cost = $180 ($50), Capacity = 2.5 MW
“**Hydro

= Cost = $88 ($9), Capacity = 1.5 MW
**Wind (DG)

= Cost = S87 (S5), Capacity = 0.6 MW

£ESE Carnegie Mellon ¥
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Load

**Total load
= 1.9 MW (Snap shot)

s*Customer type

= Private Load
“¢Interruption cost = $2,100 /kWh
s*willing to pay for high reliability
= Public Load
“*Interruption cost = SO /kWh

[FSE Carnegie Mellon
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Switch

2 Normally open switches in the system
**No Normally closed switch

**|T challenge: Find location of NCS and NOS

tZ-'&' Carnegie Mellon



Economic dispatch

= Assume:

**All generations are available to supply power (consider
only cost of generation)

**Power from hydro and wind is available whenever
customers want power
= Order of Gen to supply load
“*Wind: Capacity = 0.6 MW, $87
*¢*Hydro: Capacity = 1.5 MW, $88
“¢*Diesel: Capacity = 2.5 MW, S180

V>4 4 Carnegie Mellon ¥
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Preliminary Results

**The original system
= Interrupting cost = $S67,709/year
**The planning period = 10 years

No. of installed 0 20
switches
Switch cost 0 20x$5,000
= $100,000
Interrupting cost  $67,709/year x 10 $16,585/year x 10
year year
= $677,090 = $165,850
Total cost $677,090 $265,850
V>4 4 Carnegie Mellon ¥



Location of installed NCS

1 2 2 4 5 G
- e o s |
CE-2 *
B g 10 11 12 13 14 15 16 i
R %‘5 T T T T v T ;
17 18 00 19 |dos 20 21 22 23 24 25 26 27 i
O T L e S R S S
i ® N T T T |
3 | |
COE 31 321’ _____ 3 ; _____ 3 ; _____ 3 ; _________ ii+|
1 1 L ] II |
- 3:; 3;' 3'31 3|91 40 :: :
1 1 1 1 |___|I__I
oo 41 42 p 4:11 '1- hl. n n ::
Diesel _. Ll 51 --1551 i:
5 o Re=======s=s=sssssssssesosed
Location of installed NOS
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Generation Cost

***Diesel

= Cost =5180
“**Hydro

= Cost = 588
*Wind

= Cost = $87
*Gas

= Cost=5130

£r 7 Carnegie Mellon (Y
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Load

Load profile for summer (5 months)

2.5 Assume
) load profile will repeat in each day
In 1 year, 5 months for summer and 7
1.5 months for winter
;
0.5
D . .
012345678 9101112131415161718192021222324 Load profile for winter (7 months)
Howur 25
2
1.5
1
Average 1.66 1.62
0.5
Load MW MW
0]
Peak Load 182 197 0123 4567 8 9101112131415161718192021222324
MW MW Hour
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Solution

*¢* Solution-1: Central Generation

+** Solution-2: Central Generation with only Demand
Response

= DR: Disconnect all public customers
Private customers decrease their usage 20%

+* Solution-3: DG without Demand Response
+* Solution-4: DG with Demand Response

* Note: Solution-3 and Solution-4
** Using NCS/NOS to reconfigure the system to supply priority customers

V>4 4 Carnegie Mellon ¥
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Generation reserve estimate

Total energy in 1 year 14,303.51 MWh
Gen with capacity of 2 MW 2 MW*8,760 hr = 17,520 MWh

* Gen must cover peak load (1.97 MW)

« Without DG, Gen-1 and Gen-2 must have sufficient reserve power to supply all
customers when losing Gen-1 or Gen-2

Total Load with DR in 1

year 4,512.047 MWh
Peak load in normal 1.97 MW
condition

Peak load when applying 0.62 MW

D
* In normal conclﬁtion, the total capacity of Gen-1 and Gen-2 must cover peak load

« Demand Respond will help reduce energy usage when losing Gen-1 or Gen-2
« Each Gen must cover peak load of applying DR
V7534 Carnegie Mellon (¥
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Generation reserve estimate

DG with capacity of 0.7 MW 0.7 MW?*8,760 hr = 6,132 MWh

Gen with capacity of 1.3 1.3 MW*8,760 hr = 11,388
MW MWh

» Capacity of DG must be 0.7 MW to cover peak load when applying DR

* When losing Gen-1 or Gen-2, capacity of Gen and DG must cover peak load
(1.97 MW)

« Solution-4:
« Capacity of Gens and DG is the same as that capacity in Solution-3

524 Carnegie Mellon <Y



Expected Generation cost and Liability Cost in 1 year

Solution-3 Solution-4
Gen-1 =1.3 MW Gen-1 =1.3 MW
Gen-2 =1.3 MW Gen-2 =1.3 MW

DG =0.7 MW DG =0.7 MW

Solution-1 Solution-2

Gen-1=2MW Gen-1=1.7 MW
Gen-2=2MW Gen-2=1MW

Gen-1 Gen-2 DG

Hydro Diesel Wind
Hydro Diesel Gas

$1,259,028.02
$1,259,028.02

$1,768,726.16
$1,768,726.16

$1,252,576.69
$1,381,173.36

$1,252,433.22
$1,381,016.04

Hydro Hydro Wind
Hydro Hydro Gas

$1,258,957.85
$1,258,957.85

$1,258,784.61
$1,258,784.61

$1,252,536.60
$1,258,694.65

$1,252,433.22
$1,258,574.52

Diesel Diesel Wind
Diesel Diesel Gas

$2,574,805.33

$2,574,536.02
$2,574,536.02

$2,004,272.51
$2,267,946.70

$2,004,088.96
$2,267,752.19

$2,574,805.33

Note: Gen-1 Gen-2 DG | A(S1-S2) A(S1-S3) A(S1-S4)
consider Hydro Diesel Wind|($509,698.14) $6,451.33  $6,594.79
economic Hydro Diesel Gas |($509,698.14) ($122,145.34) ($121,988.02)
dispatch Hydro Hydro Wind $173.24 $6,421.25  $6,524.62
DG _ Hydro Hydro Gas $173.24 $263.20 $383.33
supplies Diesel Diesel Wind $269.31  $570,532.82 $570,716.38
peak load _ _
Diesel Diesel Gas $269.31  $306,858.63 $307,053.14
5e Carnegie Mellon



Summer load profile for 1 hr
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Winter load profile for 1 hr
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Solution 3 (without DR) vs Solution 4 (with DR)

+** Solution-3 has interrupting cost from disconnecting some
private customers

** However, for solution-4, customers reduce their energy
usage according to DR. Thus, there is no interrupting cost.
*** The results from sol-3 and sol-4 are almost the same

= Since we assume that public customers will be disconnected
while private customers will reduce their energy usage for 20%

= This DR assumption is similar to using reconfiguration to supply
priority customers

= May need to adjust the new percentage of energy usage for
public and private customers

= Then customers would still have energy to use although the
amount of energy is less than energy that they expect.

£S5 E Carnegie Mellon ¥
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Next algorithmic improvements

**Should be long term planning
= Depend on the contract of reliability insurance
" 5-10 years (Need to vary this parameter)

“*Switch cost is capital cost -> discount rate

“**Interrupting cost is considered as operating
cost -> discount rate
*Improve the assumption of fault

= Make it more realistic -> Need old reliability data
of the system

V>4 4 Carnegie Mellon ¥
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Designing market rules to harvest hidden efficiencies

Key role of aggregators to account for the effects of DERs
in distributions systems on whole-sale markets Adaptive Load Management (ALM) [9-11]

Market

AN
&/ i

LSE

End-user @

ngg Power plant drawing by Catherine Collier, Integration and Application Network, University of Maryland Center for
P4

Long-term cohl’\

Load serving entity LSE

48
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Concluding remarks

** Tradeoffs defined by the system users, not by the top-down
hard constraints.

¢ DERs need to provide info about their willingness to
participate in efficient markets (loss reduction, load factor
increase, reserve reduction; SW maximization)

¢ Very careful definition of long-term economic efficiency for
reliable service needed

¢ Potential for enhancing efficiency at differentiated reliability
large given flexibility and distributed nature of DERs

*»* Key role of aggregators to enable harvesting distribution
system level efficiency by the wholesale electricity markets

*» IT-enabled infrastructure for enabling differentiated reliability
of service at value possible; real opportunity [,6,7,8]
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