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Disruption of Power Distribution

e Hurricane Irene 2011:
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Vulnerable Last Mile: Power Distribution Networks

765 kV, 500 kV

230 kV, 138 kV
230 kV or 138 kV Substation

Power Transmission

Last Mile: Substations to end-users



Prior Work

* Focus:

« Transmission networks, cascading blackout:
» Bienstock (11), Dobson (04), Hines et.al. (09), lllic et. al. (05)...
 Distribution networks: Zhu (05)

* Approaches:

« Stationary failure/recovery probability, resilience
« Liew (94), Smith (11), Zhu (05)

 Needs: Distribution network

* Challenges: Randomness, dynamics, external disturbance.



Basic Question

How resilient are power distribution networks to
large-scale external disturbances?

* Modeling: Non-stationary large-scale outages?

* Learning: Real data to concept (resilience)?

Challenge: How to learn from “one” disturbance ?



Our Approach: Modeling + Learning

Modeling:
Failure process
/ T
Resilience metric
/
Recovery process
Learning:

Real data —> Empirical process —— Resilience



Formulation: Spatial Temporal Process

Assume Markov state transition in

~o— X;(1)=0 time: At t+dt
B Failure: X (t+df)=1X(1)=0
“we A (0= Recovery: X.(t+dt)=0,X.(t)=1
In failure: P(X.(t+dt)=1,X.(t)=0)
-P(X(t+dt)=0,X.(¢)=1)

I. space, t: time

O0: Normal, 1: Failure

n equations for a network of n nodes



Temporal Process: Model

Aggregation over nodes:

Failure Process Recovery Process
A (1) gvlit)

A,(¢): Failure rate, determined by external disturbance, network

g(vlt): Recovery time distribution, determined by resource, environment, network

GI(t)/ G(t)/ o queue: o --- Recovery can start post failure

t. Non-stationary



Resilience Metric

* Probability of (delayed) recovery: P(S <1)

P(S<t)= ng(t—u lu)A, (u)du
0 / ~

“Weighted sum”: Distribution of recovery time, of failure time



Learning

Given data set D={failure time, recovery-time}, learn
o failure rate )Lf(t),
* Probability density function of recovery time g(v|i),

* Resilience P(5<i).



From Real to Virtual Data

Real Virtual (Anonymized)
A strong hurricane » Location/Time of the hurricane
Affected large areas * “Power outage™
Affected millions of Loss of communication connectivity
customers

« 106 samples (outages)

« Sample = {failure time, duration}

Authentic: Pertinent properties of the data after aggregation

(Erjongmanee and Ji, IEEE Trans. Network and System Management, 2011)



Histogram: Non-Stationary Failure/Recovery
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L earned Failure Process

Lén_dfajll 'if(j) * Non-stationary failure rate

* Independent new failures
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Learned Recovery Time Distribution
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Resilience Metric

“Locations of Outages”
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Fast recovery (<13hrs): 47%
Slow recovery: 53%

Google Map



Summary

Model: Non-stationary random processes
Resilience metric: Probability of fast recovery

Learning: from one external disturbance to network resilience.

Practicality: Usable to utility providers for their serviced networks



Why Use “Virtual” Outage Data?

* Real data: Inspiration and insights. A lot is collected.
« Qutages: Not faults of utility providers’

* Security/privacy: Enable, not hinder, learning from data
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