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Disruption of Power Distribution 

•  Hurricane Irene 2011:  

     South to East Coast   

 4 million customers affected 
 

 

•  >10 major hurricanes,  
snow/ice storms in 
America, 2005-2011 

                                                

    Outages at DC/Virginia (Google) 



Vulnerable Last Mile: Power Distribution Networks 

                  
 
 
 
  
 
 

        Last Mile: Substations to end-users 
 

Power Transmission 
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Prior Work 

•  Focus:  
•  Transmission networks, cascading blackout:  

•  Bienstock (11), Dobson (04), Hines et.al. (09), Illic et. al. (05)… 

•  Distribution networks:  Zhu (05) 
•  Approaches: 

•  Stationary failure/recovery probability, resilience  
•  Liew (94), Smith (11), Zhu (05) 
 

•  Needs: Distribution network 
•  Challenges: Randomness, dynamics, external disturbance.  



 

•  Modeling: Non-stationary large-scale outages?  
 
•  Learning: Real data to concept (resilience)?  

  
 
 
  

 
    
 

Basic Question 

    
 
 
     
     
  
 
    
 

How resilient are power distribution networks to 
large-scale external disturbances? 
 

Challenge: How to learn from “one” disturbance ?   



Our Approach: Modeling + Learning  

    
 
  

 
    
 

 
 
 
 
 
 
 

    
 
 
 
  
       
 
            

 

  Failure process  
 
 
 
 Recovery process  

Resilience metric  

   Real data          Empirical process  Resilience  

                Learning:  
 

  Modeling:    



Formulation: Spatial Temporal Process 

 
 
 
 
           i:  space, t: time 

          0: Normal, 1: Failure  

                            

Assume Markov state transition in 
time:  At t+dt  

Failure:  

Recovery:  

In failure: 

              - 

                         n equations for a network of n nodes 
 

Xi (t + dt) =1,Xi (t) = 0
Xi (t + dt) = 0,Xi (t) =1
P(Xi (t + dt) =1,Xi (t) = 0)

P(Xi (t + dt) = 0,Xi (t) =1)



•  Aggregation over nodes:  

 

 
          : Failure rate, determined by external disturbance, network 

 g(v|t):  Recovery time distribution, determined by resource, environment, network 

                          queue:       --- Recovery can start post failure  

 

                                                 t: Non-stationary 
 

 

 

GI(t) /G(t) /!

Temporal Process: Model 

  Failure Process              Delay            Recovery Process 
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Resilience Metric 

•  Probability of (delayed) recovery: P(S < t)  

  
 
  
“Weighted sum”: Distribution of recovery time, of failure time 
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Learning 

Given data set D={failure time, recovery-time}, learn 
 
•  failure rate          ,  
 
•  Probability density function of recovery time g(v|t), 

•  Resilience P(S<t).  

 

                                            

! f (t)



From Real to Virtual Data 

     Real 
•  A strong hurricane  

•  Affected large areas  

•  Affected millions of 
customers  

 

             Virtual (Anonymized) 
•  Location/Time of the hurricane 

•  “Power outage”:  

   Loss of communication connectivity  

•  106 samples (outages)  

•  Sample = {failure time, duration}   

 Authentic: Pertinent properties of the data after aggregation 
 
 
  
        (Erjongmanee and Ji, IEEE Trans. Network and System Management, 2011) 



Histogram: Non-Stationary Failure/Recovery 

Failure time 

Recovery Time 



Learned Failure Process 

•  Non-stationary failure rate 

 

•  Independent new failures 

 

•  Non-Homogeneous Poisson  
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Learned Recovery Time Distribution 

      

• Mixture model (Weibull): 

• Non-stationary: Coefficients vary   
with time 

g(v | t) = ! j
j=1

L(t )

! (t)gj (v | t)

gj (v | t;kj (t)," j (t))

k j (t)<1

k j (t)>1

Fast recovery 

Slow recovery 



Resilience Metric 

 
 

P(S < t)          “Locations of Outages” 

Google Map 



Summary 

•  Model: Non-stationary random processes  

•  Resilience metric: Probability of fast recovery 

•  Learning: from one external disturbance to network resilience. 

 

•  Practicality: Usable to utility providers for their serviced networks  

 

 

  



Why Use “Virtual” Outage Data? 

•  Real data: Inspiration and insights. A lot is collected. 
 
•  Outages: Not faults of utility providers’ 

•  Security/privacy: Enable, not hinder, learning from data  
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