Leveraging Block-Composable Optimization Modeling Environments for Transmission Switching and Unit Commitment

John D. Siirola,¹ Jean-Paul Watson,¹ and David L. Woodruff ²

¹ Discrete Math & Complex Systems Department
Sandia National Laboratories
Albuquerque, NM USA

² Graduate School of Management
University of California, Davis
Davis, CA USA

Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software
25 June 2012
This is a talk on *modeling environments*

Our premise:
- Optimization (math programming; MP) is critical for grid planning and operations
- Typical models are tough to create and tougher to understand
- We increasingly leverage *problem-specific structure* to solve harder (bigger, more complex) problems effectively

Our approach:
- New MP modeling environment (Pyomo)
 - *Extensible*: new modeling constructs
 - *Powerful*: develop new native solvers, heuristic methods
 - *Open*: (1) transparent; solvers, heuristics, etc. can interrogate and manipulate model
 - *Open*: (2) freely distributable; researchers, vendors, operators can share models
The Challenge: MP is dense and subtle

Minimize: \[\sum_t \sum_g \left(c_g P_{g0,t} + c_g^{SU} v_{g,t} + c_g^{SD} w_{g,t} \right) \] (1)

S.t. \[\theta^{\min} \leq \theta_{net} \leq \theta^{\max}, \quad \forall \ n, c, t \] (2)

\[\sum_{k(n,c)} P_{kct} = \sum_{k} P_{kct} + \sum_{g(n)} P_{g0,t} = d_{nt}, \quad \forall \ n, c = 0, \text{ transmission contingency states } c, t \] (3a)

\[\sum_{k(n,c)} P_{kct} = \sum_{k} P_{kct} + \sum_{g(n)} P_{gct} = d_{nt}, \quad \forall \ n, \text{ generator contingency states } c, t \] (3b)

\[P_{kc}^{\min} N_{1_kc} \leq P_{kct} \leq P_{kc}^{\max} N_{1_kc}, \quad \forall \ k, c, t \] (4)

\[B_k(\theta_{net} - \theta_{net}) - P_{kct} + (2 - z_{kt} - N_{1_kc}) M_k \geq 0, \quad \forall \ k, c, t \] (5a)

\[B_k(\theta_{net} - \theta_{net}) - P_{kct} - (2 - z_{kt} - N_{1_kc}) M_k \leq 0, \quad \forall \ k, c, t \] (5b)

\[P_{g}^{\min} N_{1 gc} v_{g,t} \leq P_{gct} \leq P_{g}^{\max} N_{1 gc} v_{g,t}, \quad \forall \ g, c, t \] (6)

\[v_{g,t} = u_{g,t} - u_{g,t-1}, \quad \forall \ g, t \] (7)

\[\sum_t v_{g,t} \leq u_{g,t}, \quad \forall \ g, t \in \{UT_t, \ldots, T\} \] (8)

\[\sum_t w_{g,t} \leq 1 - u_{g,t}, \forall \ g, t \in \{DT_t, \ldots, T\} \] (9)

\[P_{g0,t} - P_{g0,t-1} \leq R_g^{+} u_{g,t-1} + R_g^{SU} v_{g,t}, \quad \forall \ g, t \] (10)

\[P_{g0,t-1} - P_{g0,t} \leq R_g^{-} u_{g,t} + R_g^{SU} v_{g,t}, \quad \forall \ g, t \] (11)

\[P_{gct} - P_{g0,t} \leq R_g^{+}, \quad \forall \ g, c, t \] (12)

\[P_{g0,t} N_{1 gc} - P_{gct} \leq R_g^{-}, \quad \forall \ g, c, t \] (13)

\[0 \leq v_{g,t} \leq 1, \quad \forall \ g, t \] (14)

\[0 \leq w_{g,t} \leq 1, \quad \forall \ g, t \] (15)

\[u_{g,t} \in \{0, 1\}, \quad \forall \ g, t \] (16)
The Challenge: MP is dense and subtle

Minimize:

$$\sum_t \sum_g \left(c_g P_{g0t} + c_g^{SU} v_{gt} + c_g^{SD} w_{gt} \right)$$

S.t.

$$\min_0 \leq \theta_{nct} \leq \max_0, \ \forall n, t$$

$$\sum_k P_{kct} - \sum_k P_{kct} + \sum g(n) = d_{nt}, \ \forall n, c = 0, \ \text{transmission contingency states c, t}$$

$$\sum_k P_{kct} - \sum_k P_{kct} + \sum g(n) = d_{nt}, \ \forall n, \ \text{generator contingency states c, t}$$

$$P_{kct}^{\min} N_{1k} z_{k+1} \leq P_{kct} \leq P_{kct}^{\max} N_{1k} z_{k+1}, \ \forall k, c, t$$

$$B_k(\theta_{nct} - \theta_{nct}) - P_{kct} + (2 - z_{k+1} - N_{1k}) M_{k+1} \geq 0, \ \forall k, c, t$$

$$B_k(\theta_{nct} - \theta_{nct}) - P_{kct} - (2 - z_{k+1} - N_{1k}) M_{k+1} \leq 0, \ \forall k, c, t$$

$$v_{g,t} - w_{g,t} = u_{g,t} - u_{g,t+1}, \ \forall g, t$$

$$\sum_t v_{g,q} \leq u_{g,t}, \ \forall g, t \in \{UT_g, \ldots, T\}$$

$$\sum_t w_{g,q} \leq 1 - u_{g,t}, \ \forall g, t \in \{DT_g, \ldots, T\}$$

$$P_{g0t} - P_{g0t-1} \leq R_g^{u_{g,t-1} + R_g^{SU} v_{g,t}}, \ \forall g, t$$

$$P_{g0t} - P_{g0t-1} \leq R_g^{u_{g,t-1} + R_g^{SD} w_{g,t}}, \ \forall g, t$$

$$P_{gct} - P_{g0t} \leq R_g^c, \ \forall g, c, t$$

$$P_{g0t} N_{1g} - P_{gct} \leq R_g^c, \ \forall g, c, t$$

$$0 \leq v_{g,t} \leq 1, \ \forall g, t$$

$$0 \leq w_{g,t} \leq 1, \ \forall g, t$$

$$u_{g,t} \in \{0, 1\}, \ \forall g, t$$

To a first approximation:

- DCOPF
- Economic dispatch
- Unit commitment
- Transmission switching
- N-1 contingency

(Nonobvious) Inherent structure

• Layered (nested) model complexity
Block-oriented modeling

• “Blocks”
 – Collections of model components
 • Var, Param, Set, Constraint, etc.
 – Blocks may be arbitrarily nested

• Why blocks?
 – Support reusable modeling components
 – Express distinctly modeled concepts as distinct objects
 – Manipulate modeled components as distinct entities
 – Explicitly expose model structure (e.g., for decomposition)

• Prior art
 – Ubiquitous in the simulation community
 – Rare in Math Programming environments
 • Notable exceptions: ASCEND, JModelica.org
Coopr: a COmmon Optimization Python Repository

PYthon Optimization Modeling Objects

Decomposition Strategies
- Progressive Hedging
- Generalized Benders
- DIP Interface (coming soon)

Language extensions
- Disjunctive Programming
- Stochastic Programming

Core Optimization Infrastructure

Pluggable Solver Interfaces

CPLEX
Gurobi
Xpress
GLPK
CBC
PICO
OpenOpt
AMPL Solver Library

Ipopt
KNITRO
Coliny
BONMIN

Siirola, Watson, Woodruff, p. 7
Pyomo overview

• Formulating optimization models natively within Python
 – Provides a natural syntax to describe mathematical models
 – Can formulate large models with a concise syntax
 – Separates modeling and data declarations
 – Enables data import and export in commonly used formats

• Highlights:
 – Clean syntax
 – Python scripts provide a flexible context for exploring the structure of Pyomo models
 – Leverage high-quality third-party Python libraries, e.g., SciPy, NumPy, MatPlotLib

```python
from coopr.pyomo import *
m = ConcreteModel()
m.x1 = Var()
m.x2 = Var(bounds=(-1,1))
m.x3 = Var(bounds=(1,2))
m.obj = Objective(
    sense = minimize,
    expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3 + m.x2 + m.x2*sin(m.x1+m.x3)
)
model = m
```
Structured modeling with blocks

- Capture connected block structure, e.g., *network flow*

- Block interface through *connectors* (group of variables)

- Block implementation independent of network definition

<table>
<thead>
<tr>
<th>Domain</th>
<th>Node</th>
<th>Arc</th>
<th>Connector Vars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid flow</td>
<td>Mass balance</td>
<td>Pressure Drop</td>
<td>Pressure; Volumetric flow</td>
</tr>
<tr>
<td>AC Power flow</td>
<td>KCL</td>
<td>Active power transfer;</td>
<td>Phase angle; Active power flow; Reactive power flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reactive power transfer</td>
<td></td>
</tr>
</tbody>
</table>
DC OPF: transmission (line) model

```python
def dc_line_rule(line, id):
    line.B = Param()
    line.Limit = Param()
    line.V_angle_in = Var()
    line.V_angle_out = Var()
    line.Power = Var(bounds= ( -line.Limit, line.Limit ) )

    line.power_flow = Constraint( expr = 

    line.IN = Connector( initialize= 
        { "Power": -line.Power, "V_angle": line.V_angle_in } )

    line.OUT = Connector( initialize= 
        { "Power": line.Power, "V_angle": line.V_angle_out } )
```
from coopr.pyomo import *

model = AbstractModel()

model.BUSES = Set()
model.LINES = Set()
model.GENERATORS = Set()
model.ENDPOINTS = Set(initialize=['IN', 'OUT'])

model.links = Param(model.LINES, model.ENDPOINTS)
from power_flow import
 dc_line_rule as line_rule, \
 dc_bus_rule as bus_rule, \
 dc_generator_rule as generator_rule

model.bus = Block(model.BUSES, rule=bus_rule)
model.line = Block(model.LINES, rule=line_rule)
model.generator = Block(model.GENERATORS, rule=generator_rule)

def _network(model, l, end):
 if endpoint == 'IN':
 return model.line[l].IN == model.bus[value(model.links[l, end])].PORT
 else:
 return model.line[l].OUT == model.bus[value(model.links[l, end])].PORT
model.network = Constraint(model.LINES, model.ENDPOINTS, rule=_network)

def _generator_placement(model, g):
 return model.generator[g].OUT == model.bus[value(model.generator[g].bus)].PORT
model.generator_placement = Constraint(model.GENERATORS, rule=_generator_placement)
Solving block models

1) Construct hierarchical model
 - Generate blocks (Variables + Internal constraints)
 - “Connect” blocks by forming constraints over block connectors

2) Use a *model transformation* to “flatten” the model
 - Replicates connector constraints for each variable in connector
 - Generates aggregating constraints
 - (Eliminates redundant variables)
```
from power_flow import ac_line_rule as line_rule, \
ac_bus_rule as bus_rule, \
ac_generator_rule as generator_rule

model.bus       = Block( model.BUSES, rule=bus_rule )
model.line      = Block( model.LINES, rule=line_rule )
model.generator = Block( model.GENERATORS, rule=generator_rule )

def _network(model, l, end):
    if endpoint == 'IN':
        return model.line[l].IN == model.bus[ value(model.links[l, end]) ].PORT
    else:
        return model.line[l].OUT == model.bus[ value(model.links[l, end]) ].PORT
model.network = Constraint(model.LINES, model.ENDPOINTS, rule=_network)

def _generator_placement(model, g):
    return model.generator[g].OUT == model.bus[ value(model.generator[g].bus) ].PORT
model.generator_placement = Constraint(model.GENERATORS, rule=_generator_placement)
```

Model libraries: switching to ACOPF is trivial
Manipulating model blocks

• Generalized Disjunctive Programming (GDP)
 – Switching entire blocks on/off through binary variables

• Introduce new modeling components:
 – “Disjunct”
 • a new form of model block
 – “Disjunction”
 • a new constraint for enforcing logical XOR over disjunctive sets

\[
\min \sum_k c_k + f(x) \\
\text{s.t. } g(x) \leq 0 \\
\bigvee_{i \in D_k} \begin{bmatrix} Y_{ik} \\ h_{ik}(x) \leq o \\ c_k = \gamma_{ik} \end{bmatrix} \\
\Omega(Y) = \text{true} \\
Y_{ik} \in \{\text{true, false}\}
\]
Creating an “open line” model

```python
def open_dc_line_rule(line):
    line.V_angle_in = Var()
    line.V_angle_out = Var()
    line.Power = Var()

    line.power_flow = Constraint(expr=line.Power == 0)

    line.IN = Connector(initialize={
        "Power": -line.Power,
        "V_angle": line.V_angle_in
    })

    line.OUT = Connector(initialize={
        "Power": line.Power,
        "V_angle": line.V_angle_out
    })
```
Creating a “switchable line”

```python
def switchable_dc_line_rule(line, id):
    line.V_angle_in = Var()
    line.V_angle_out = Var()
    line.Power_in = Var()
    line.Power_out = Var()

    line.IN = Connector( initialize=
        { "Power": line.Power_in, "V_angle": line.V_angle_in } )
    line.OUT = Connector( initialize=
        { "Power": line.Power_out, "V_angle": line.V_angle_out } )

    line.Closed = Disjunct( rule=dc_line_rule )
    line.Open = Disjunct( rule=open_dc_line_rule )
    line.Switch = Disjunction( initialize=[line.Closed, line.Open] )

    line.connections = ConstraintList()
    for block in ( line.Open, line.Closed ):
        line.connections.add( line.IN = block.IN )
        line.connections.add( line.OUT = block.OUT )
```

Siirola, Watson, Woodruff, p. 17
Creating a transmission switching model

```python
from power_flow import switchable_dc_line_rule as line_rule, 
dc_bus_rule as bus_rule, 
dc_generator_rule as generator_rule

model.bus = Block( model.BUSES, rule=bus_rule )
model.line = Block( model.LINES, rule=line_rule )
model.generator = Block( model.GENERATORS, rule=generator_rule )

def _network(model, l, end):
    if endpoint == 'IN':
        return model.line[l].IN == model.bus[ value(model.links[l, end]) ].PORT
    else:
        return model.line[l].OUT == model.bus[ value(model.links[l, end]) ].PORT
model.network = Constraint(model.LINES, model.ENDPOINTS, rule=_network)

def _generator_placement(model, g):
    return model.generator[g].OUT == model.bus[ value(model.generator[g].bus) ].PORT
model.generator_placement = Constraint(model.GENERATORS, rule=_generator_placement)
```
Solving GDP models

- Automated transformations generate “flat” MI(N)LPs
 - Big-M relaxation
 - Convex hull relaxation
def dc_economic_dispatch_rule(b, *args):
 b.bus = Block(b.model().BUSES, rule=bus_rule)
 b.line = Block(b.model().LINES, rule=line_rule)
 b.generator = Block(b.model().GENERATORS, rule=generator_rule)

def _network(b, l, end):
 if endpoint == 'IN':
 return b.line[l].IN == b.bus[value(b.model().links[l, end])].PORT
 else:
 return b.line[l].OUT == b.bus[value(b.model().links[l, end])].PORT
ed.network = Constraint(b.model().LINES, b.model().ENDPOINTS, rule=_network)

def _gen_placement(b, g):
 return b.generator[g].OUT == b.bus[value(b.generator[g].bus)].PORT
b.generator_placement = Constraint(b.model().GENERATORS, rule=_gen_placement)
from power_flow import dc_economic_dispatch_rule

model.TIMES = SET()

model.period = Block(model.TIMES, rule=dc_economic_dispatch_rule)

def _gen_limit(model, t, g):
 if t == 1:
 return Constraint.Skip
 else:
 return model.period[t-1].generator[g].STATE == \
 model.period[t].generator[g].PREV_STATE

model.generation_limit = Constraint(model.TIMES, model.GENERATORS, rule=_gen_limit)

Note: the generator ramp limits and startup / shutdown constraints are part of a “switchable generator” block similar to the “switchable line” block. This is a complex block (13+ parameters, 8+ variables, 7+ constraints), and is completely abstracted away by the block modeling approach.
Exploiting block structure: decomposition

• “Block diagonal” models very common in optimization
 – Stochastic programming
 – Parameter estimation
 – Design enumeration (e.g., $N-1$)
Putting it together: UC + switching + N-1

- Network Model
- Generator Model
- Bus model
- Switchable Transmission Line
- Transmission Line Power Flow Model
- Current Balance (KCL)
- Ramp Limits (Y_i)

N-1 Contingencies
Unit Commitment Decisions
“Blocks” fundamentally change modeling

- Explicit model blocks
 - Component reuse
 - Implicit transformations when generating model instances

- Generalized Disjunctive Programs
 - Explicit transformations to create standard forms
 - (Solver-specific decomposition)

- Block diagonal models
 - Implicit transformation to create standard forms
 - Solver-specific decomposition
Acknowledgements

• Sandia National Laboratories
 – Bill Hart
 – Jean-Paul Watson
 – John Sirola
 – David Hart
 – Tom Brounstein
• University of California, Davis
 – Prof. David L. Woodruff
 – Prof. Roger Wets
• Texas A&M University
 – Prof. Carl D. Laird
 – Daniel Word
 – James Young
 – Gabe Hackebeil
• Texas Tech University
 – Zev Friedman
• Rose Hulman Institute
 – Tim Ekl
• William & Mary
 – Patrick Steele
• North Carolina State
 – Kevin Hunter

Plus our many users, including:
 - University of California, Davis
 - Texas A&M University
 - University of Texas
 - Rose-Hulman Institute of Technology
 - University of Southern California
 - George Mason University
 - Iowa State University
 - N.C. State University
 - University of Washington
 - Naval Postgraduate School
 - Universidad de Santiago de Chile
 - University of Pisa
 - Lawrence Livermore National Lab
 - Los Alamos National Lab
For more information…

• Project homepage
 – http://software.sandia.gov/coopr

• “The Book”

• Mathematical Programming Computation papers
 – PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)