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1. Compute new power flows

2. Determine new set of outaged lines
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→ This talk: linearized flows

→ Working on: AC power flows

Low (2011): some (all?) AC power flow problems can be (at least
approximately) modeled using SDP

I Efficient in the large scale setting?

I However, “local” version seems workable – can either find a
nearby solution, or prove that none exists (cannot be done
with Newton-Raphson)
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Outage mechanism

Notation: fr
k = flow on line k in round r

Set f̃r
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Controlled cascades

→ Initial outage event takes place.

Compute control.

For r = 1, 2, . . . ,R− 1

1. Reconfigure demands and generator output levels.

2. New power flows are instantiated.

3a. Take measurements and apply control to shed demand.

3b. Reconfigure generator outputs; get new power flows.

4. The next set of outages takes place.

At round R, reduce demands so as to remove any line overloads.
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Adaptive affine controls

For each demand bus n v, and round r, control triple cr
v, br

v, sr
v

→ Parameterized by integers r > 0 and δ > 0.

At round r,

I Let κδ = max overload of any line within radius δ of v

I If κδ > cr
v, demand at v reduced (scaled) by a factor

min
{

1,
{

br
v + sr

v (cr
v − κδ)

}+
}

.

Example: (1, 1, s) control; scale = min
{

1, {1 + s (1− κ)}+
}

.

Problem: choose control so as to maximize demand at end of round R.
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General methodology: simulation-based optimization

Given a control vector ũ = (cr
v, br
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v) (over all v and r),

Υ(ũ) = total demand satisfied at cascade end
(yield)

I Maximization of Υ(ũ) should be (very?) fast

I Optimization should be robust (noisy process)

I From a strict perspective, Υ(ũ) is not even continuous

Υ(ũ) is obtained through a simulation
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Υ(ũ) = total demand satisfied at cascade end
(yield)
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Derivative-free optimization

Conn, Scheinberg, Vicente, others

Rough description:

I Sample a number of control vectors ũ

I Use sample points to construct a convex approximation to Υ

I Optimize this approximation; this yields a new sample point

Scalability to large dimensionality?

(Not?)
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“First order” method

Given a control vector ũ

1. Estimate the “gradient” g = ∇Υ(ũ) through finite
differences.

Requires O(1) simulations per demand node.

2. Estimate step size argmax Υ(ũ + σg)

→ Easily parallelizable
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Solving the optimal scaling problem, fast

For each r, and for each component (“island”) K at round r,

(cr
s, br

s, sr
s) = (cr

t, br
t, sr

t)

for every s, t in K

Then, equivalent problem:

I In round r, choose αr(K) ≤ 1 for each component K

I If bus v ∈ component K, then scale its demand by αr(K)
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Solving the optimal scaling problem

Notation:

I β̂ = supply/demand vector at time 0

I ΥR(β) = total demand using optimal control, at end of round R,
if the supply/demand vector is β at time 0

I For each t ≥ 0, compute ΘR(t)
.

= ΥR(tβ)

Theorem:

ΘR(t) is piecewise linear nondecreasing with O(mR−1/R!) breakpoints.

Actually, O(f(R) m2) breakpoints.

Well, probably O(R m) breakpoints.
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Implementation

(1) Solve scaling problem

(2) Grid search around control found by scaling problem

(3) (optional) First-order method on demand-quantile control

(4) (optional) Then switch to first-order method

I Parallel implementation using Unix sockets

I 24 cores (3 x 8-core Intel i7 systems) soon (?) more cores,
cloud, BlueGene, gpu (?)

I Gurobi, Cplex used to solve linear systems

I (1) and (2) on grids with 104s lines/buses require seconds

I Five gradient steps of general method: ∼ one hour wallclock
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Experiments on the Eastern Interconnect:
approximately 15K buses and 23K lines (Powerworld 03sfeq)

I Cascade initiated by disabling many high flow lines (but
retaining connectivity)

Control subject to two constraints:

I Control an only operate in rounds 1 - 10

I Length of cascade limited to R = 20 rounds

All cascades evaluated on three criteria:

I Yield

I Length of cascade (= no. of rounds until stable)

I Number of outaged lines
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No control Control 1 Control 2
r lines out yield % lines out yield % lines out yield %

1 24 100 3 81 3 81
2 56 99 5 81 5 81
3 127 99 3 81 3 81
4 132 98 4 81 0 75
5 253 96 6 81
6 467 94 20 81
7 433 91 63 81
8 483 90 33 81
9 389 87 49 81

10 419 85 65 81
15 263 70 0 80
16 357 67
17 495 65
18 335 63
19 101 61
20 15 61
24 1 61
25 0 61
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yield = 70.45%, 4619 outaged lines stable at round 4, yield = 75%, 11 outaged lines

green = normal operation
blue = disabled by contingency
black = outage
red, yellow = overload



Round 16

no control control

yield = 66.78%, 4976 outaged lines stable at round 4, yield = 75%, 11 outaged lines

green = normal operation
blue = disabled by contingency
black = outage
red, yellow = overload



Round 17

no control control

yield = 65.09%, 5471 outaged lines stable at round 4, yield = 75%, 11 outaged lines

green = normal operation
blue = disabled by contingency
black = outage
red, yellow = overload



Round 18

no control control

yield = 62.89%, 5806 outaged lines stable at round 4, yield = 75%, 11 outaged lines

green = normal operation
blue = disabled by contingency
black = outage
red, yellow = overload



Round 19

no control control

yield = 61.46%, 5907 outaged lines stable at round 4, yield = 75%, 11 outaged lines

green = normal operation
blue = disabled by contingency
black = outage
red, yellow = overload



Round 25

no control control

stable, yield 60.78%, 5959 outaged lines stable at round 4, yield = 75%, 11 outaged lines

green = normal operation
blue = disabled by contingency
black = outage
red, yellow = overload



Why: overloads in no-control case
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No control Control 1 Control 2
r lines out yield % lines out yield % lines out yield %

1 24 100 3 (.81) 81 3 (.81) 81
2 56 99 5 81 5 81
3 127 99 3 81 3 81
4 132 98 4 81 0 (.92) 75
5 253 96 6 81
6 467 94 20 81
7 433 91 63 81
8 483 90 33 81
9 389 87 49 81

10 419 85 65 81
15 263 70 0 80
16 357 67
17 495 65
18 335 63
19 101 61
20 15 61
24 1 61
25 0 61



Why: overloads under control 1
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A very different cascade



No control Control
r κ O I Y κ O I Y

1 40.96 86 1 100 40.96 86 1 100
2 8.60 187 8 99 8.60 165 8 ∗ 96
3 55.51 365 20 98 61.74 303 17 96
4 67.14 481 70 95 66.63 408 44 94
5 94.61 692 149 93 131.08 492 94 93
6 115.53 403 220 91 112.58 416 146 90
7 66.12 336 333 89 99.62 326 191 ∗ 78
8 47.83 247 414 87 60.95 227 248 77
9 7.16 160 457 85 32.50 72 279 76

10 7.06 245 542 84 9.50 43 292 76
15 5.03 64 721 81 1.34 1 312 75
16 84.67 72 743 80 1.13 1 312 75
17 32.15 52 756 80 1.38 2 312 75
18 6.50 43 763 80 1.26 1 312 75
19 9.97 85 812 80 0.99 0 312 75
34 0.99 0 995 78

κ = max line overload, O = outages, I= islands, Y = yield (%)
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round 19

no control control

stable, yield = 75%, 2598 outaged lines



round 20

no control control



round 34

no control control

stable, yield = 78%, 4425 outaged lines (stable at round 19, yield = 75%, 2598 outaged lines)



Stochastic models: why?

I Noise should accumulate as the cascade unfolds

I Need a better way to account for line outages near the limit
I Deterministic rule is too unforgiving and may not match

anything “real”
I Deterministic rule is numerically unstable



Stochastic line outage rule:

For each round r, use a threshold 0 < εr < 1.

Given a line k (notation: f̃k = moving average of |flow| on line k),

I k is not outaged if |f̃k | < (1− εr )uk ,

I k is outaged if |f̃k | > uk , and

I k is outaged with probability 1/2, if (1− εr )uk ≤ f̃k ≤ uk .

→ Example: εr = 0.01 + 0.05 ∗ br/10c
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Technical note

I Using the above model, yield is not a differentiable function of
control parameters

I As a result, no theoretical guarantee that stochastic gradients
method will converge

A smooth model:

Line k is outaged with probability F(f̃k/uk), where

I F(x)→ 1 as x → +∞,

I F(x)→ 0 as x → 0,
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Experiments using εr = 0.01 + 0.05 ∗ br/10c

I (Second cascade discussed above)

I Uncontrolled cascade is stable at round 34, with yield = 78%
and 4425 outaged lines

I Compare to four control algorithms c10, c15, c20, c25

I Here, each control cT must achieve stability by round T, but
can only shed load in rounds 1 - 10.

Why?

Greater robustness is achieved by limiting the time frame
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1000 runs

Option DetY MaxY MinY AveY StddY

c10 37.49 38.93 0.00 7.54 9.55
c15 72.44 63.94 3.41 28.02 17.94
c20 75.19 73.04 0.00 32.24 21.30
c25 77.23 54.62 0.25 16.84 12.66

no control 77.75 18.86 0.00 5.11 5.28
(34 rounds)


