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The challenges of uncertainty



 

The stochastic unit commitment problem 
» Which power generating units should be committed when planning a 

day in advance?
» How should this problem be solved in the presence of significant 

levels of energy from renewables?


 

Energy storage
» How do we manage energy storage in a real-time market to manage 

daily cycles?
» How do we plan regulation capacity in the day-ahead market?



 

Balancing energy from renewables
» Variations from wind and solar can be regulated with a mixture of 

nuclear, natural gas (CC and CT), storage and demand response.  But 
what is that mixture?



 

Load curtailment and demand response
» When and where do we may requests to curtail loads on the system?
» How do we manage price signals?





Intermittent energy sources

Wind speed                

Solar energy                



Energy storage
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Presentation Notes
Discuss how storage can be used to transfer peaks into valleys to smooth out the volatility of different sources (including rainfall and snow melt).

Also discuss how storage can smooth out the variation in demand – perhaps we could use nuclear at a higher level to store power during low demand periods and then use it to satisfy high demand periods.



Energy storage portfolios



 

Designing a dynamic storage control policy for portfolios 
of storage devices.

WindWind



Electricity spot prices
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Average price 

 

$50/megawatt-hour 



Energy resource modeling



 
Need to plan long term energy investments…

2010                 2015 2020                  2025                  2030

Tax policy Batteries

Solar panels Carbon capture and 
sequestration

Price of oil

Climate change

Presenter
Presentation Notes
Uncertainties also arise over the longer horizon in the form of changes in tax policies, changes in technology, long-term changes in the supplies (and prices) of commodities, and changes in climate (or our understanding of climate).



Stochastic resource allocation



 
The objective function

Given a system model (transition function)

» We have to find the best policy, which is a function that 
maps states to feasible actions, using only the 
information available when the decision is made.
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Decision function (policy)State variable
Contribution function

Finding the best policy

Expectation over all
random outcomes
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Stochastic programming

Markov decision processes

Simulation optimization

Stochastic search

Reinforcement learning

Optimal control

Policy search

learningQ 

Model predictive control

On-policy learning Off-policy learning



What is a policy?



 
Policies come in four fundamental flavors:
» 1) Myopic policies

• Take the action that maximizes contribution (or minimizes 
cost) for just the current time period:

• We can parameterize myopic policies with bonus and penalties 
to encourage good long-term behavior.
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What is a policy?



 
Policies come in four fundamental flavors:
» 2) Lookahead policies - Plan over the next T periods, 

but implement only the action it tells you to do now.
• Deterministic forecast

• Stochastic programming

• Rolling horizon procedures
• Model predictive control
• Rollout heuristics
• Tree search
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What is a policy?



 
Policies come in four fundamental flavors:
» 3) Policy function approximations

• Tabular 
– When in this state, take this action.

• Regression models

• Neural networks
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What is a policy?



 
Policies come in four fundamental flavors:
» 4) Policies based on value function approximations

• Using the pre-decision state

• Or the post-decision state:

• The challenge is finding a good approximation of the value of 
being in a state.
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Approximations



 
There are three classes of approximation strategies 
(for policies and value functions):
» Lookup table

• Given a discrete state, return a discrete action or value

» Parametric models
• Linear models (“basis functions”)
• Nonlinear models
• Neural networks

» Nonparametric models
• Kernel regression
• Dirichlet process-based models
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Lecture outline



 

Optimizing energy storage


 

The stochastic unit commitment problem for PJM



Policy optimization



 
Optimizing a policy for battery arbitrage





 

Challenge: find a policy for charging and discharging the 
battery
» Strategy posed by the battery manufacturer: “Buy low, sell high”

Buy

Sell

Buy

Sell

Buy

Sell

Buy

Sell

Buy

Sell

Optimizing storage



Decision making under uncertainty

Don’t gamble; take all your 
savings and buy some good stock 
and hold it till it goes up, then 
sell it.  If it don’t go up, don’t 
buy it.

Will Rogers

It is not enough to model the variability of a process.  You have 
to model the uncertainty – the flow of information.





 
At NRG’s request, we had to design a simple, 
implementable policy that did not cheat!



 
We have developed a separate line of research in 
optimal learning to determine 

Withdraw
Store

and .Store Withdraw 

Optimizing storage



1 2 3 4 5

The exploration vs. exploitation problem



 
The knowledge gradient:
» Assume you can make only one measurement, after which 

you have to make a final choice (the implementation 
decision).

» What choice would you make now to maximize the 
expected value of the implementation decision?



The exploration vs. exploitation problem



 
The knowledge gradient
» The knowledge gradient is the expected value of a 

single measurement x, given by

» Knowledge gradient policy chooses the measurement 
with the highest marginal value.

» This can be viewed as a kind of coordinate ascent 
algorithm.

 , 1max ( , ( )) max ( , )KG n n n n
x y yE F y K x F y K  

Knowledge state
Implementation decision

Updated knowledge state given measurement x
Expectation over different measurement outcomes

Marginal value of measuring x (the knowledge gradient)

Optimization problem given what we know
New optimization problem





 

An important problem class involves correlated beliefs – 
measuring one alternative tells us something other 
alternatives.

5

measure
here......these beliefs change too.

The knowledge gradient

1 2 3 4



The knowledge gradient

Price of electricity (e.g. for EV’s)



25

Optimizing storage

WithdrawStore





 

Initially we think the value is the same everywhere:

» We want to measure the value where the knowledge gradient is the 
highest.  This is the measurement that teaches us the most.

Optimizing storage

Estimated value Knowledge gradient





 

After four measurements:

» Whenever we measure at a point, the value of another 
measurement at the same point goes down.  The knowledge 
gradient guides us to measuring areas of high uncertainty.

Optimizing storage

Measurement
Value of another measurement 
at same location.

Estimated value Knowledge gradient

New optimum



Optimizing storage


 

After five measurements:

Estimated value Knowledge gradient



Optimizing storage


 

After six samples

Estimated value Knowledge gradient



Optimizing storage


 

After seven samples

Estimated value Knowledge gradient
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Fred – remaining slides you should click through fairly quickly.



Optimizing storage


 

After eight samples

Estimated value Knowledge gradient



Optimizing storage


 

After nine samples

Estimated value Knowledge gradient



Optimizing storage


 

After ten samples

Estimated value Knowledge gradient





 

After 10 measurements, our estimate of the surface:

Optimizing storage

Estimated value True concentration





 

After 10 measurements, our estimate of the surface:

Optimizing storage
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The value of perfect information

$389,000

Cost of
battery

Will Rogers policy Admissible policy

Optimizing storage
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Lecture outline



 

Optimizing energy storage


 

The stochastic unit commitment problem for PJM





The stochastic unit commitment problem





 
The day-ahead problem
» Determines which coal/nuclear/natural gas/…plants to 

turn on/off and when.
» Will use wind/solar when available and if needed.
» Requires point forecast of wind/solar/demand.

….subject to numerous constraints, including integrality.

» The problem is solved using two adjustment parameters
• p Fraction of generator capacity assumed (e.g. 93 percent)
• q Quantile of wind forecast assumed for advance 

commitments.
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The stochastic unit commitment problem





 
The hour-ahead problem
» Each hour, we can make modest adjustments.  Plants 

that are “on” can be adjusted up and down.
» Cannot turn coal plants on and off.
» Actual may differ from forecast:

• Wind may be higher or lower than forecast.  If higher, may not 
be able to use it because of inability to scale back other 
sources.

• Demand may exceed forecast.  Wind/solar may fall below 
forecast.  In this case, we find the least cost unit that can be 
scaled up quickly enough.

The stochastic unit commitment problem





 
Modeling
» A deterministic model

» Stochastic formulation – I
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The stochastic unit commitment problem





 
Modeling
» Stochastic formulation – II

• is determined at time t, to be implemented at time t’
• is determined at time t’, to be implemented at time t’+1

» Important to recognize information content
• At time t,         is deterministic.
• At time t,         is stochastic.     
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The stochastic unit commitment problem





 
Matching supply to demand
» We have to find the best way to meet demand

» …. Now we have to do it in the presence of significant 
levels of wind and solar energy.

The stochastic unit commitment problem





 

The unit commitment problem
» Rolling forward with perfect forecast of actual wind, demand, …

hour 0-24 hour 25-48 hour 49-72

, 't tx






The stochastic unit commitment problem





 

When planning, we have to use a forecast of energy from 
wind, then live with what actually happens.

hour 0-24

The stochastic unit commitment problem
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The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24

', 't ty

The stochastic unit commitment problem
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The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24

The stochastic unit commitment problem
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The unit commitment problem
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hour 0-24

The stochastic unit commitment problem
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The unit commitment problem
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The unit commitment problem
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The unit commitment problem
» Stepping forward observing actual wind, making small adjustments

hour 0-24

The stochastic unit commitment problem
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The value of optimizing (p,q)

10 %

The stochastic unit commitment problem





 
The effect of modeling uncertainty in wind

The stochastic unit commitment problem



Conclusions



 
The design of effective energy systems requires a 
careful understanding of how they are operated 
under realistic assumptions about what you know 
and when you know it.



 
Accurate models of energy systems requires 
understanding not just the flow of physical 
systems, but also the flow of information.



 
Making good decisions under uncertainty 
(“stochastic optimization”) requires a balance of 
art (designing policies) and science (tuning 
policies). 
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