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What’s the Need?

As variable generation penetration increases, utilities 
need to know their options for managing balance
Planning for the future is essential in light of the potential 
high costs involved (e.g. pumped hydro)
New Resources are available

Storage
Demand Response
Variable Resources Themselves
Traditional Generation
Coordinated Hydro Operations

The likely choice for managing balance is a portfolio of 
resources



Concept of Imbalance

Today:
1. Forecast tomorrow’s load 

demand
2. Schedule/assign generators to 

meet tomorrow’s forecasted load

Tomorrow:
3. When the load appears, it will 

not be exactly as forecasted
4. The difference between 

scheduled generation and actual 
load is imbalance

5. Imbalance must be met with real 
time resources

I just lied a little bit…



Why Does Imbalance Need to Be 
Managed?

1. Conservation of Energy requires all 
energy to be accounted for… there is no 
imbalance
2.  The grid actually does have some 
stored energy in the form of rotational 
kinetic energy

3.  When the energy is used to balance the system, 
the rotational speed decreases- hence the frequency 
decreases.
4.  If frequency changes too much, the grid will crash
5. Balancing reserves prevent excessive frequency 
changes



Renewables Integration Model- What it Does

Evaluates the impacts of variable generation (wind and 
solar) on planned grid operations (off-line model)

Uses real data as available
The model simulate operations to 

Predict the effects of variability, including impacts on 
Control Performance Standards
Generation ramping and operating reserve requirements, etc 

Develop and evaluate the results of mitigating measures
Improved scheduling process
Better forecasting system
Coupling the intermittent resources with hydro resources and 
energy storage, and other measures

Conduct “what if studies” like…
Analyzing the maximum acceptable penetration levels, 
New wind generation technologies, etc 



RIM Will Allow Leveraging Geographic 
Diversity of Resources
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BA1    Std Deviation =  28.5326, Mean = 96.52
BA2    Std Deviation =  29.5035, Mean = 100.16
BA3    Std Deviation =  29.8008, Mean = 102.66
Sum's Std Deviation =  53.2437, Mean = 299.34

 



RIM Will Determine the Impacts of Wind on 
Regulation and Load Following
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RIM Will Model Low Probability, High 
Consequence Events
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Tail events (for projected wind in a large utility system in August 2010):



RIM Can Place Higher Value on Faster 
Balancing Resources
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RIM Can Optimally Deploy Balancing 
Resources
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RIM Overview



Use Case Examples 

Each use case question was formulated by utility 
discussions and was then distilled into specific  and 
measurable analysis criteria that can be solved by the 
RIM

1. When we add a wind into a control area, what impact it will have on 
the control area’s operations?

2. For an existing system, with present generation portfolio and 
flexibility, what is the amount of reserves needed and cost 
associated to mitigate the variations caused by wind energy in the 
system? 

3. How will Control Performance Standards (or frequency regulation, or 
BAAL etc.) be affected if a new wind farm is established in and what 
will it cost to manage the imbalance?



How is RIM Different From Other Model Such 
As Production Cost Models?

RIM time step goes as low as 1 minute, allowing inter-hour imbalance 
to be managed using solar, wind and load data at the same resolution

Monte Carlo Analysis
Parameter Sensitivity Analysis

RIM has an advanced hydrological model
RIM allows resources to contribute to balancing services

Storage
Loads
Wind or Solar itself
Traditional Generation (e.g. CT) 

Allows a portfolio of balancing resources to manage 
imbalances
Input cost functions and constraints for resources
Will tabulate CPS, emissions, wear and tear, costs
AGC controls are adjustable



Wind (Solar expected in FY11 by SNL)
Weather modeling feeds production modeling feeds into RIM
Multiple production scenarios based on installed capacity and location
Wind power output can be calculated using different meso-scale 
models for all common wind turbines at multiple hub heights
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Meso-scale wind 
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Hydro

Resource 
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Objective of the hydro module is to maximize the available power for 
balance.
Constraints include environmental, recreational, spill, navigational, 
and level restrictions due to unforseen events.



WIM Hydro Model

Many constraints, but two controls: spill or generate



Storage
Models of several energy storage technologies are available for 
simulation
Energy storage is dispatched based on user defined objectives such 
as cost minimization of the overall system

ENERGY STORAGE MODEL FUNCTIONALITY

STORAGE TYPE:
Ideal

Batteries
CAES
SMES

Flywheels
Ultra capacitors
Pumped-hydro

STORAGE PARAMETERS:
Min and Max Power

Energy Capacity
Other parameters

DATABASE

STORAGE MODEL

CONSTRAINTS:
Power Limits

State of Charge (SOC)
Initial and Final SOC

Ramp Rate Limits

UN IT COMMITTMENT 
OPTIMIZATION

OBJECTIVE:
Minimize Cost

SCHEDUELES and 
FORECAST for Net 
LOAD and PRICES

COST FUNCTION:
Efficiciency
Capital Cost

O&M

0-10 Min Dispatch

Arbitrage

10-60 Min Dispatch



Resource Commitment
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Security constrained optimization of conventional and non-
conventional energy resources such as load, storage, and even wind 
and solar
High performance computing resources enable time-series and 
monte-carlo analysis



Resource Dispatch
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Adjustments performed in real-time operation in time steps of 10 
minutes down to one minute
Energy resources are adjusted based on their energy, power, ramp 
rate capability and cost minimization (including cycling limits for 
storage)
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Load Curtailment

Air Conditioning
Heating
Water Heaters
Washers
Dishwaswhe4rs
Refrig Defrost Cycle
Commercial AC

Queue for state transition
-Natural transition at ends
-Forced transitions in middle



Load Curtailment
Reduced Order Model From Gridlab-D

Load Period (Length of cycle): High
Duty Cycle (% time on):Low

Load Period (Length of cycle): Med
Duty Cycle (% time on): High



Post Processing
Allows mathematical operations on time series results
Perform statistical analyses using MATLAB
Provides scenario results as probabilities, sensitivities, or values



Graphical User Interface
Provides access to simulation set-up parameters
User identifies the type of results needed
Allows access to library of common models and scenarios, and allows 
these to be manually reconfigured as desired by the user



Graphical User Interface
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Software Architecture

Architecture and individual modules are being 
programmed in C++ and CPLEX
Software is being built to run in parallel method for Monte 
Carlo and sensitivity analysis
Cplex software is used for all major optimization routines



WIM Structure



High Level
GUI Overview



Validation- Three Phases Starting Dec, 2010

1.  Develop a test plan using two base cases developed in 
coordination with BPA engineers and hydrologists. 

Model the operation of the BPA system during 2008 (wet year) 
and 2009 (dry year), then compare the results to system historical 
output. 

2.  Exercise all normal constraints on the hydro operation as  
well as thermal generation.

3.  Verify longer-term validity by investigating the effect of 
such things as wind forecast errors and different 
scheduling approaches to cope with wind uncertainties.  
Monte Carlo analysis will be exercised 



Future

Solar Module
Under development by SNL in FY11

Market Module
Currently, prices are included as constants, but not markets.
Neither demand nor  system constraints affect power prices.

Unit Commitment to include forecast confidence intervals
Demand Response Model Variants
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