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Model Formulation 
 

Representation of the Bulk Power System 
 
We consider a DC linearized lossless1 representation of the power system such that the 
power flows f on transmission facilities and flowgates are represented by the following 
equation 
 
 ( , ) ( ) [ ( , ) ( ) ( ( , ) ( ))]o o of t f t p t p t L t L t        (1) 
 
where the superscript o indicates a base case power flow quantity, and p and L are the 
vectors of nodal power injections and loads, respectively. The power system is 
considered over time and under multiple stochastic scenarios.   
 
For the purpose of this paper, we assume that the vector of power injections includes both 
actual physical injections by generating resources and virtual injections in the form of 
controllable by a system operator demand response measures.  These physical generating 
resources and demand response measures are commonly referred to as generation 
resources, or resources for short, characterized by their capacities, availabilities and low 
bound operational limitations, as discussed below. 
 
Time spans over the planning horizon 0 t T  .  
 
For the purpose of this paper, a finite number of stochastic scenarios numbered by  

1,2,..., N   is considered, where N is the total number of stochastic scenarios with 

                                                 
1 Losses are assumed to be accounted for in the demand vector L 
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probabilities2 ( ) 0   and 
1

( ) 1
N



 


 .  Demand requirements, resource availability and 

transmission topology may change over time and these changes vary by stochastic 
scenario. 
 
The base power flow parameters and the power flow itself caused by system conditions 
are dependent on time t. The transmission sensitivity matrix   gives the variations in 
flows due to changes in the nodal injections, with the reference bus assumed to ensure the 
real power balance. This matrix could also depend on time and be subject to random 
perturbations due to transmission line outages. 
 
The system is considered under load conditions represented by a vector stochastic process 

( , )L t .  Power flows represented by equation (1) must remain within security limits of 
the predetermined set of flowgates. Flowgate limits are also considered stochastic and 
time-dependent: 
 
 ( , ) ( , )f t f f t    (2) 

 
In general, the upper limits of all flowgates are non-negative, and lower limits of 
flowgates are non-positive: 
 ( , ) 0, ( , ) 0f t f t    (3) 

 
 
Power injections by resources are bounded from above by the rated resource capacities 
and resource availabilities.  The level of resource availability varies by stochastic 
scenario and over time.  Power injections of resources could also be bound from below 
by operational constraints: 
 
 ( , ) ( , ) ( , )S t X p t S t X     (4) 
 
where X is a vector of rated capacities. Stochastic resource availabilities and per unit low 
bound operational limitations are positioned on diagonals of matrices ( , )S t  and ( , )S t  , 
respectively, while all other elements of these matrices are zeros.  Upper limits of 
resource availability and its low bound operational limitation are in order: 
 
 0 ( , ) ( , ) 1ii iis t s t     (5) 

 
 
In addition to resources and load, for each bus we define a non-negative value of 
unserved energy represented by vector u such that the system balance, security and load 
interruption feasibility equations take the following form, respectively: 
                                                 
2 Typically, when scenarios are generated through a Monte-Carlo process, all scenarios have the same 
probability equal 1/N.  A more sophisticated modeling techniques may rely on a pre-selection of most 
informative scenarios and in this case probabilities may vary by scenario. 
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 ( ( , ) ( , ) ( , )) 0Te p t u t L t      (6) 
 
 ( , ) ( , )[ ( , ) ( , ) ( , )] ( , )F t t p t u t L t F t           (7) 
 
 
Here 
 

 
[ ]

[ ]

o o o

o o o

F f f p L

F f f p L

   

   
 (8) 

 
Assuming that the linearization is sufficiently precise, and due to (3), we can postulate 
that  
 ( , ) 0, ( , ) 0F t F t    (9) 
 
 
 0 ( , ) ( , )u t l t    (10) 
 
and 
 

 1 1 ... 1Te   

 
The load shedding limits3 in (10) are assumed to be known, albeit time and scenario 
dependent, parameters bounded by the total demand 
 
 ( , ) ( , )l t L t   (11) 

Representation of a Service Interruption 
 
For each realization of random variable   the bulk power system is capable of providing 
non-interrupted services to all its elements if and only if a system of equations and 
inequalities (4)-(10) have a feasible solution such that 0u  .  If such a solution does not 
exist, a service interruption in the system is unavoidable.    
 
A detection of a service interruption could be obtained by finding a set of resource 
injections and load shedding minimizing the total volume of unserved energy  
 
 min ( , ) ( , )TUE t e u t   (12) 
 
 

                                                 
3 This constraint implicitly assumes an infinitely large VOLL associated with load being reduced below the 
set level.  



 4

subject to constraints (6)-(10).  If the solution results in the value of objective function 
( , ) 0UE t   , service interruption can be avoided.  If the optimal value of the objective 

function (12) turns out to be positive, service interruption is unavoidable. The solution to 
this optimization problem could be called a reliability dispatch.  For each optimal 
reliability dispatch, one can determine locational dual variables 
 

 
( , )

( , )
UE t

UE t
L

  



 (13) 

 
which can be interpreted as Marginal Unserved Energy.  By averaging equation (13) 
across all stochastic scenarios, we defined Marginal Expected Unserved Energy (MEUE) 
as 

 
( )

( )
EUE t

MEUE t
L





 (14) 

where  
 

 
 

 
1

( ) ( , ) ( ) ( , )

( ) ( , )

N

EUE t UE t UE t

MEUE t UE t


   

 


 



E

E

 (15) 

 
Equations (13)-(14) deserve additional discussion.  Let us assume that under all 
stochastic scenarios, no transmission constraint binds.  Under this assumption, ( , )UE t   
will be the same for every bus in the power system, ( , ) 0UE t   for all scenarios in 
which there is no service interruption and ( , )UE t e    (increasing demand by 1 MW 
will increase the level of unserved energy by exactly 1 MW) for all scenarios with service 
interruption.  From this, it is obvious, that in the absence of transmission constraints the 
Marginal Expected Unserved Energy at all locations will be equal to the probability to 
experience a service interruption, otherwise known as a Loss of Load Probability 
(LOLP).  In other words, in the absence of transmission constraints, equation (14) 
becomes a well known formula: 
 

 
( )

( )
EUE t

LOLP t
L





 (16) 

 
(In this case the derivative is taken by the total demand such that we have scalar variables 
in both sides of the equation). 
 
However, in a system with transmission constraints, equation (16) does not hold. 
 
As demonstrated in the second part of this paper, indicator MEUE is directly related to 
what we call a Locational Stochastic Reliability Price (LSRP) playing an important role 
in making optimal system expansion decisions and therefore should be considered an 
adequate generalization of the concept of LOLP for constrained systems.   
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The Optimal Capacity Selection Problem 
 
We assume that the selection of generation capacity is conducted through an auction in 
which the Auctioneer in order to maintain an economically justified reliable operation of 
the power system solicits offers from existing and prospective generation owners and 
demand response service providers commonly referred to as resource providers 
 

Resources 
 
For each unit of offered resource capacity the following information is provided to the 
Auctioneer: 
 

 Capacity location on the electrical grid (bus number j) 
 Maximum capacity offered jY  (in MW) 

 Per unit capacity payment required jc  

In addition, for each offered resource the Auctioneer obtains statistical parameters upon 
which it can develop availability and low bound operational limitation scenarios.  These 
scenarios are combined in matrices ( , ), ( , )S t S t  .  The Auctioneer selects a mix of 
capacities that could be deployed over the entire planning horizon 0 t T  . 
 
For the purpose of this paper, we make the following simplifying assumptions: 
 

 All offered resources could be placed into service at the beginning of the planning 
horizon; 

 The Auctioneer is not required to select the entire size of the offered capacity jY  

and can choose any portion of it. 
 

Economic Model of Load Shedding 
 
In the simplest case we assume that for each location, the Auctioneer has an estimate of 
the instantaneous value of loss load (VOLL) which is assumed to remain constant over 
time, but could be different for different locations.  The vector of VOLL values for all 
locations is denoted as V .  For example, locational VOLL values could be set 
administratively either uniformly for the entire system or vary by location based on 
particular economic and policy considerations4. 
 
The model of load shedding could be further expanded by assigning levels of VOLL 
increasing with the depth of service interruption at a given location. In this case values of 
                                                 
4 Theoretically it is conceivable, that the vector of VOLL values could be specified by Load Serving 
Entities (LSEs).  However, this assumption requires further theoretical consideration which is beyond the 
scope of this paper. 
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VOLL are specified as a step function: load reduction at node j up to 1
jl  is valued at 1

jV , 

reduction between 1
jl  and 2

jl  is valued at 2
jV  where 1 2

j jl l  and 1 2
j jV V  and so on. Such 

step-function might be represented by creating multiple nodes attached to the same bus, 
each with its own demand and VOLL.  Similar models would emerge in the event of 
multiple load serving entities, each with its own demand profile and VOLL but connected 
to the same bus. 
 
 

Auctioneer’s Optimization Problem 
 
The Auctioneer’s objective function is to minimize the total cost of maintaining the 
economically justified reliable operation of the power system.   This objective functions 
consists of two parts – the cost of procured mix of resources and the expected cost of 
unserved load. 
 
 
 [ ]TR c X VUE E  (17) 
 
Here [ ]VUEE  represents the expected value of unserved energy equal to  
 

 
1 0

[ ] ( ) ( , )
TN

TVUE V u t dt


  


 E  (18) 

 
The Auctioneer’s goal is  
 

 
1 0

min ( ) ( , )
TN

T TR c X V u t dt


  


    (19) 

 
 
The Auctioneer determines the optimal resource mix subject to the following constraints. 
 

1. Maintaining the energy balance in each hour under each stochastic scenario, 
subject to potential service interruptions: 

 
 ( ( , ) ( , ) ( , )) 0    ( , )Te p t u t L t t         (20) 
 

2. Maintaining the security of the transmission system: 
 
 ( , ) ( , )[ ( , ) ( , ) ( , )] ( , )    ( , ) 0, ( , ) 0F t t p t u t L t F t t t                  (21) 
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3. Operating each resource within the limits of capacity procured at the auction and 
subject to generator’s availability and low bound operational limitations5: 

 
 ( , ) ( , ) ( , )   ( , ) 0, ( , ) 0S t X p t S t X t t             (22) 
 

4. Unserved energy is non-negative and cannot exceed allowed load shedding limits 
( , ) ( , )l t L t  : 

 
 0 ( , ) ( , )     ( , ) 0, ( , ) 0u t l t t t            (23) 
 

5. Procured capacity does not exceed capacity offered: 
 
 0   0, 0X Y         (24) 

 
 
 
In order to formulate the optimality conditions, we define the Lagrangian of the 
Auctioneer’s problem (19) - (23).  

  

1 0

1 0

1 0

1 0

0

( ) ( , )

( ) ( , ) ( ( , ) ( , ) ( , ))

( ) ( , ) ( ( , ) ( , ) ( , )) ( , )   

( ) ( , ) ( ( , ) ( , ) ( , )) ( , )

( ) ( , ) (

TN
T T

TN
T

TN
T

TN
T

T
T

c X V u t dt

t e p t u t L t dt

t p t u t L t F t dt

t p t u t L t F t dt

t p









  

      

       

       

   









  

  

      

    



 

 

 

 

  
1 1 0

1 10 0

, ) ( , ) ( ) ( , ) ( , ) ( , )

( ) ( , )( ( , ) ( , )) ( ) ( , ) ( , )  

( )    

TN N
T

T TN N
T T

T T

t S t X dt t p t S t X dt

t u t l t dt t u t dt

X Y X

 

 

       

          

 

 

 

    

  

  

  

  

(25) 

 
 

The KKT Optimality Conditions 
 
                                                 
5 In most cases for the purpose of the capacity procurement auction low bound operational limitations could 
be ignored: water on a hydro plant could be spilled, wind can be curtailed and excess thermal generator 
simply would not be committed.  We, however, include these low bound constraints for the sake of 
generality. 
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Stationarity Conditions 
 

 
1 10 0

1 0

0 ( ) ( , ) ( , ) ( ) ( , ) ( , ) 0

( ) ( , ) ( , ) ( , ) ( , )

T TN N
T T T T T

TN
T

c t S t dt t S t dt
X

c S t t t S t dt

 



           

         

 




      



     

  

 
(26) 

 

0
( , )

( , ) ( ( , ) ( , )) ( , ) ( , ) 0

( , ) ( , ) ( , ) ( ( , ) ( , ))

T T T T T T

T

u t

V t e t t t t

t t V t e t t


         

         


 



      

       

 (27) 

 
 

 

0
( , )

( , ) ( ( , ) ( , )) ( ( , ) ( , )) 0

( , ) ( ( , ) ( , )) ( ( , ) ( , ))

T T T T T

T

p t

t e t t t t

t e t t t t


         

         


 



      

   

 (28) 

 
 
 

Complementarity Conditions 
 

 
[ ( , ) ( , ) ( , )] ( , ) ( , ) 0

[ ( , ) ( , ) ( , )] ( , ) ( , ) 0

T T T

T T

p t u t L t F t t

p t u t L t F t t

     

     

      
       

 (29) 

 
 

 
( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) 0

T T

T T

p t X S t t

p t X S t t

   

   

   
    

 (30) 

 

 
( , )( ( , ) ( , )) 0

( , ) ( , ) 0   

T

T

t u t l t

t u t

   

  

 


 (31) 

 

 
( ) 0

0

T T

T

X Y

X





 

 
 (32) 
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Optimal Capacity Selection 
 
Based on conditions (26) and (32), capacity jX will be: 

 
 selected at full offered volume  ( j jX Y ) if and only if 

 

 
1 0

( ) ( , ) ( , ) ( , ) ( , )
TN

j jj j jj jc S t t S t t dt


       


      (33) 

 
 rejected ( 0)jX  if and only if 

 

 
1 0

( ) ( , ) ( , ) ( , ) ( , )
TN

j jj j jj jc S t t S t t dt


       


      (34) 

 
 accepted partially (0 )j jX Y  if and only if 

 
1 0

( ) ( , ) ( , ) ( , ) ( , )
TN

j jj j jj jc S t t S t t dt


       


      (35) 

 
Based on (33)-(35), it is logical to define the resource capacity price (RCP) as 
 

 
1 0

( ) ( , ) ( , ) ( , ) ( , )
TN

j jj j jj jRCP S t t S t t dt


       


      (36) 

 
Based on the above definition, the resource capacity price should be applied to the total 
capacity of the resource procured at the auction.    
 
 

Reliability Dispatch and Locational Stochastic Reliability Price 
 

LRSPs Defined 
 
For any given set of selected capacities, optimal reliability dispatch for a given stochastic 
scenario is the dispatch which minimizes the cost of unserved load.  At a given moment 
in time on each stochastic scenario, the objective function of reliability dispatch is to 
minimize 
 
 min ( , )TV u t   (37) 
subject to constraints (20)-(23).  
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It is not difficult to observe that satisfying conditions (27) - (31) assure optimal reliability 
dispatch of the power system at any given moment in time in each stochastic scenario.  
Optimal dispatch yields an optimal locational price – a reduction in the total cost of 
unserved energy in response to the marginal reduction in locational demand.  The 
underlying mathematics of this locational price is identical to that of the Locational 
Marginal Price (LMP) resulting from the optimal economic dispatch.  However, in this 
case, the considered dispatch of the system is not an economic dispatch, but a reliability 
dispatch.  Hence we will call the corresponding value of the locational price the 
Locational Stochastic Reliability Price (LSRP).  This term reflects that the price is 
locational, that it corresponds to the reliability dispatch and that it is stochastic because it 
depends not only on time and location, but also on the stochastic scenario of system 
operation  . 
 
Similarly to the definition of LMPs, the vector of LSRPs is determined as  
 
 ( , ) ( , ) ( , )( ( , ) ( , ))TLSRP t t e t t t           (38) 

 
Using this definition, we establish the relationship between LSRPs and dual variables 

( , ), ( , )t t    .  From (28) and (30) we derive that:  
 

 if ( , ) 0j t   then ( , ) 0j t   , resource j is dispatched at full level of available 

procured capacity ( , ) ( , )j j jjp t X S t  and ( , ) ( , )j jt LSRP t   .   

 
 Similarly, if ( , ) 0j t   then ( , ) 0j t   , the resource is forced to operate at the 

lowest point ( , ) ( , )j j jjp t X S t  and ( , ) ( , )j jt LSRP t    .   

 
 Finally, if both ( , ) 0j t   and ( , ) 0j t   , then the  resource j is dispatched as 

marginal and the LSPR at that resource’s location equals zero.  Based on this 
discussion, we can conclude that 

 
  ( , ) max 0, ( , )t LSRP t    (39) 

  ( , ) max 0, ( , )t LSRP t     (40) 

 
 
Indeed, if ( , ) 0jLSRP t   it is equal to ( , )j t  .  If ( , ) 0jLSRP t   , then both 

( , ) 0j t   and ( , ) 0j t    and if ( , ) 0jLSRP t   then ( , ) 0j t   and  

( , ) ( , )j jt LSRP t    and therefore (39) and (40) always hold.   
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A Relationship between Resource Capacity Prices and LSRPs 
 
By combining (39) with (36) we obtain the following relationship between RCPs and 
LSRPs 
 

    
1 0

( ) ( , ) max 0, ( , ) ( , ) max 0, ( , )
TN

RCP S t LSRP t S t LSRP t dt


     


       (41) 

 
Or, replacing the averaging across scenarios with the expected value notation, we obtain 
a more general formula which holds for both finite and infinite sets of stochastic 
scenarios: 
 

    
0 0

( , ) max 0, ( , ) ( , ) max 0, ( , )
T T

RCP S t LSRP t dt S t LSRP t dt       E E  (42) 

 

The expression ( , ) max 0, ( , )jj jS t LSRP t     E  could be interpreted as the value of the 

option to use one unit of  the generating resource when it is needed.  The expression 

( , ) max 0, ( , )jj jS t LSRP t     E  could be interpreted as the cost of the obligation to 

use one unit of the generating resource when it is not needed.   
 
Formula (42) therefore determines resource capacity price as the difference between the 
total over time value of option to use the resource when it is needed and the total over 
time cost of obligation to use the resource when it is not needed.  According to this 
formula, a resource is compensated for its contribution to system reliability only to the 
extent it is available at the time of need: for example if at the time of need (i.e. LSRP at 
resource’s location is positive) it is available in 50%, it will be compensated only by 50% 
of the LSRP.  If due to a low bound operational limitation the resource has to be used at 
the time when it is not needed (i.e. LSRP at resource’s location is negative) the resource 
will be negatively affecting system reliability by increasing the overall value of unserved 
energy and will be charged for that. 
 

LSRPs and Nodal Economics of Load Shedding 
 
Next we explore the locational economic properties of LSRPs.  Because in the reliability 
dispatch the cost of each generator is effectively zero, in absence of energy shortage, i.e. 
if  ( , ) 0u t   , the LSRPs are equal to zero at all locations.  Indeed, because of the zero 
price of marginal generation, the cost of congestion redispatch is zero and the system 
lambda must also equal zero.  In contrast to LMPs, whose properties are primarily driven 
by the economics of nodal generation dispatch, the properties of LSRPs are primarily 
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driven by the economics of energy rationing at times of shortage.  Thus, only the 
instances of shortage are of interest here. 
 
Assuming that a supply shortage is observed at node j on scenario   at time moment t, 
but the load reduction is properly within bounds, i.e.  0 ( , ) ( , )j ju t l t   , then due to 

(31) both shadow prices ( , ) 0   j t   and ( , ) 0j t   . Combining this with (27) yields 

that  
 
  ( , )j jLSRP t V   (43) 

 
In other words, at the location of shortage where load is partially shed, the LSRP must 
equal VOLL.   
 
If the load at a given location has to be fully reduced ( ( , ) ( , )j ju t l t  ), then the LSRP 

may exceed the locational VOLL 
 
 ( , ) ( , )j j j jLSRP t V t V      (44) 

 
If the load is being shed at one location in the system, it will influence LSRPs at all other 
locations, as follows from equation (38).   
 
In a special case when the optimal solution of the reliability dispatch does not result in 
binding transmission constraints, then shadow prices for these transmission constraints 
will be equal to zero and therefore, as follows from (38), the LSRP will be the same at all 
locations.  Under these conditions load shedding will occur in order of increasing VOLL 
and the location with the highest VOLL among those where the load is being shed will 
set the LSRP for the entire system.  Thus, in absence of transmission congestion 
 
 

: ( , ) 0
( , ) max

j
j j

j u t
LSRP t V





  (45) 

 
An important case in which the value of lost load is assumed to be the same for all 
locations deserves special consideration.  In this case equation (45) could be simplified 
 
 ( , )jLSRP t VOLL   (46) 

In this case, the reliability dispatch problem is equivalent to earlier considered problem of 
minimizing the volume of unserved energy.  Indeed, the value of unserved energy is 
simply the product of the volume of unserved energy and VOLL.  Therefore, in this case 
LSRPs and EUE are also proportional to each other: 
 
 ( , ) ( , )LSRP t VOLL EUE t     (47) 
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In a more general case, when optimal reliability dispatch results in constrained 
transmission, values of LSRPs may significantly vary by location.  Examples provided at 
the end of this paper illustrate this behavior of LSRPs.   
 

Overall Auction Outcome 
 
In this section we consider the overall auction outcome not only in terms of prices but 
also in terms of resource receipts and load payments. 
 

Resource Receipts 
 
A resource at location j receives the payment of 
 
 j j jRR X RCP  (48) 

The sum of all resource receipts is equal to 
 
 TRR X RCP   (49) 

 

Load Payments 
 
At each load location j load is assumed to be paying in accordance with the following 
formula: 
 

 
1 0

( ) ( , ) ( , ) ( , )
TN

j j j jLP LSRP t L t u t dt


    


      (50) 

Or more generally 
 

 
0

( , ) ( , ) ( , )
T

j j j jLP LSRP t L t u t dt     E  (51) 

And the total amount of payments collectable from all loads participating in the auction 
will be equal to  
 

  
0

( , ) ( , ) ( , )
T

T
LP L t u t LSRP t dt    E  (52) 

 
Let’s assume now that jD is the forecast peak demand for location j. Sometimes jD is 

defined as a median value of locational peak: 
 

 Pr max ( , ) 1/ 2j j
t

L t D     (53) 



 14

 
Using locational peak demands as a representation of load capacity requirements6, it is 
now possible to define the Load Capacity Price (LCP) as 
 

 
0

( , ) ( , )
( , )

T
j j j

j j
j j

LP L t u t
LCP LSRP t dt

D D

 


 
   

  
E  (54) 

And overall load capacity payments resulting from the auction could be expressed as 
 
 TLP D LCP   (55) 

 
According to formula (54), payments to loads are assessed on the basis of demand 
realized in a given scenario.  Even if two load serving entities receive power at the same 
location but have either different VOLLs or different demand patterns, they may see 
different capacity prices.  Loads which are less interrupted (for example due to a higher 
VOLL) will be paying higher capacity prices than loads interrupted more often.  If the 
level of VOLL at the load location is in agreement with load’s preference of being 
interrupted, its load is shed if and only if LSRP at load’s location equals VOLL and 
therefore interruption would not be objected by the load.  If in some scenario, the load is 
interrupted fully, this scenario would not affect load’s capacity price at all.  This formula 
provides a fair pricing structure for reliability – load pays for reliability only “at the 
time” when there are service interruptions and only to the extent to the extent it is not 
being interrupted. “At the time” here does not refer to real time of operation, but to the 
time period and scenario of simulated reliability dispatch. 
 
This formula also reflects a correlation between LSRPs, demand and the level of 
interruption.   
 

Congestion Rent 
 
In each combination of time and stochastic scenario when load is being interrupted 
somewhere, LSRPs are either the same in all locations  (in absence of transmission 
congestion) or vary by location (in the presence of binding transmission constraints). 
 
In the first instance, since the system is in balance in the sense of equation (20) and since 
all LSRPs are the same, the following identity holds: 

  ( , ) ( , ) ( , ) ( , ) ( , )
T TL t u t LSRP t p t LSRP t       (56) 

 
However, it is not difficult to demonstrate that 
 

    ( , ) ( , ) ( , ) max 0, ( , ) ( , ) max 0, ( , )T Tp t LSRP t X S t LSRP t S t LSRP t          (57) 

                                                 
6 It is important to note that load payments do not depend on the definition of load capacity requirements as 
long as those and load capacity prices are consistent with each other in terms of equation (54). 
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Indeed, in all instances in which injection of resource j is within the open interval 

( , ) ( , ) ( , )j jj j j jjX S t p t X S t    stochastic reliability price equals 

zero, ( , ) 0jLSRP t   and identity (57) holds.  If ( , ) ( , )j jj jX S t p t  , then 

( , ) 0jLSRP t   and max 0, ( , ) ( , )j jLSRP t LSRP t      .  Similarly, if 

( , ) ( , )j j jjp t X S t  , then ( , ) 0jLSRP t   and max 0, ( , ) ( , )j jLSRP t LSRP t     .  

This proves the identity (57) for all cases.  By combining (56) and (57), we obtain that 
 

 
 

   
( , ) ( , ) ( , )

( , ) max 0, ( , ) ( , ) max 0, ( , )

T

T

L t u t LSRP t

X S t LSRP t S t LSRP t

  

   



    
 (58) 

 
 
Identity (58) indicates that in the absence of binding transmission constraints total load 
payments are exactly equal resource receipts. 
 
If some transmission constraints bind, equation (56) does not hold, but instead the 
following is true: 
 

 
 
   
 

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , )( ( , ) ( , ))

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )( ( , ) ( , ))

( , ) ( , ) ( , ) ( , )(

T T

T T

T T T

T T

L t u t LSRP t p t LSRP t

L t u t p t t e t t t

L t u t p t t e L t u t p t t t t

L t u t p t t

    

         

            

   

 

      

       

    

 
( , ) ( , ))

( ( , ) ( , )) ( , ) ( , ) ( , ) ( , )

( ( , ) ( , )) ( , )

( , ) ( , ) ( , ) ( , )

T

T

T T

t t

t t t p t L t u t

t t f t

t F t t F t

   

       

    

     



      
  

 
 
Since shadow prices for binding constraints are always non-negative and condition (9), 
we conclude that ( , ) ( , ) ( , ) ( , )T Tt F t t F t       is always non-negative and will be 

positive if and only if the reliability dispatch results in binding transmission constraints.  
This value represents a non-negative stochastic congestion rent in time period t realized 
in a given scenario 
 
 ( , ) ( , ) ( , ) ( , ) ( , ) 0T TCR t t F t t F t           (59) 

 
Congestion rent arising in the outcome of the auction will therefore equal to 
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0

( , ) ( , ) ( , ) ( , )
T

T TCR t F t t F t dt         E   (60) 

and because of (59) 
 
 0CR    (61) 

 
 
The above discussion can therefore be summarized in the following identity 
 

 
T T

LP RR CR

D LCP X RCP CR

  



 

 
 (62) 

 
Along with (61), this identity proves that load payments in the auction are always in 
excess of, or equal to, resource receipts and the outcome of the auction will never leave 
the Auctioneer revenue deficient. On the contrary, the Auctioneer will end up with the 
auction revenue surplus in the form of congestion rent.  This congestion rent should be 
returned to market participants.  The concrete procedure of the treatment of congestion 
rent is outside the scope of this paper. 
 

Examples 

Examples of LSRP Calculation 
 
All presented examples are developed for a three-bus network graphically depicted on 
Figure 1.   
 
 

~~

~

A B

C

Generator G1
Capacity = 200 MW

Generator G2
Capacity = 200 MW 

Generator G3
Capacity 120 MW

Load = 170 MW Load = 370 MW

~

 
 
Figure 1.  An Example three-node Network 
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The system depicted on the above figure is short on resources – for 540 MW total 
demand there is only 520 MW of total online capacity.  In the ensuing examples we 
consider this system under different conditions in terms of locational values of VOLL, 
transmission constraints and low bound operational limitations on resources and observe 
how these conditions impact reliability dispatch and values of LSRPs. 
 

~~

~

A B

C

Generator G1
Capacity = 200 MW

Dispatch = 200 MW
Load reduction = 0
Net = 30 MW
LSRP = $5,000

Generator G2
Capacity = 200 MW 

Dispatch 200 MW
Load reduction 35 MW
Net = - 135 MW
LSRP = $10,000

Generator G3
Capacity 120 MW

Dispatch 105 MW
LSRP = $0

Load = 170 MW Load = 370 MW

25
 M

W

55 MW

~

VOLL = $10,000

80 MW

80
 M

W

Example 1

UE = 35 MW
VUE $350,000

 
 
Figure 2.  Example 1: Line C-B constrained at 80 MW, uniform VOLL 
 
In Example 1 depicted on Figure 2 constrained transmission line increases actual load 
shedding to 35 MW and sets different LSRPs at all buses.  Marginal load shedding of 35 
MW takes place at bus B where LSRP equals VOLL of $10,000.  Marginal resource is 
located at bus C where LSRP is equal to zero.  LSRP at bus A is equal to $5,000.  A 1 
MW demand increase at bus A must come from 2 sources: 0.5 MW from generator at bus 
C and 0.5 MW additional load shedding at bus B (in order to keep flow on line C within 
limits).  This results in an incremental VUE of $5,000. 
 
This example clearly demonstrates the nodal network impact on LSRPs and ultimately on 
RCPs.  A shortage event like that renders generator G3 at bus C having zero value in its 
ability to resolve system deficit, while the generator G2 located at the bus where the load 
is being shed is twice more valuable than the generator G1 located at bus A. 
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~~

~

A B

C

Generator G1
Capacity = 200 MW

Dispatch = 200 MW
Load reduction = 10 MW
Net = 40 MW
LSRP = $10,000

Generator G2
Capacity = 200 MW 

Dispatch 200 MW
Load reduction 30 MW
Net = - 140 MW
LSRP = $20,000

Generator G3
Capacity 120 MW

Dispatch 100 MW
LSRP = $0

Load = 170 MW Load = 370 MW

Load reduction ≤ 30 MW

20
 M

W

60 MW

~

VOLL = $10,000

80 MW

80
 M

W

Example 2

UE = 40 MW
VUE $400,000

 
 
Figure 3.  Example 2:  Line C-B constrained at 80 MW, uniform VOLL, load reduction at bus B is 
limited by 30 MW 
 
Example 2 depicted on Figure 3 differs from Example 1 in one additional detail: load 
reduction at bus B is limited by 30 MW, which is 5 less than the optimal load shedding at 
that bus in Example 1.  Due to constraint along line C-B, it is not enough to simply shed 
5 MW at bus A, but in order to maintain system security load at A has to be shed by 10 
MW.  This results in LSRP at bus A rising to the level of VOLL, while LSRP at bus B is 
rising to twice the VOLL level!  Load shedding limitation at bus B therefore doubles 
LSRPs at all locations (LSRP at bus A remains at zero). 
 
 
Example 3 depicted on Figure 4 differs from Examples 1 and 2 in two important 
elements.  First, the flow limit on line C-B is now limited to mere 40 MW and at the 
same time the cost of load shedding at bus B beyond 30 MW is set at three times the 
VOLL.  The result of imposing these two conditions is that now the overall demand 
reduction in the system increases to 140 MW, the generator at bus C is forced to shut 
down.  LSRPs in this case are $10,000 at bus A, $30,000 at bus B and -$10,000 at bus C.  
Although the LSRP at bus C is negative, this will not impose a negative impact on RCP 
for that generator, because in this case no low bound operational limit is imposed on this 
resource. 
 
 
 
 
 



 19

 
 

~~

~

A B

C

Generator G1
Capacity = 200 MW

Dispatch = 200 MW
Load reduction = 90
Net = 120 MW
LSRP = $10,000

Generator G2
Capacity = 200 MW 

Dispatch 200 MW
Load reduction 50 MW
Net = - 120 MW
LSRP = $30,000

Generator G3
Capacity 120 MW

Dispatch 0 MW
LSRP = - $10,000

Load = 170 MW
Load = 370 MW                          

Load reduction ≤ 30 MW @ VOLL           
Load reduction > 30 MW @ 3 x VOLL

40
 M

W

80 MW

~

VOLL = $10,000

40 MW

40
 M

W

Example 3

UE = 140 MW
VUE = $1,800,000

 
 
Figure 4.  Example 3:  Line C-B constrained at 40 MW, uniform VOLL, load reduction at bus B is no 
longer limited, but the cost of load shedding above 30 MW is set at three times the VOLL 
 
 
Example 4 depicted on Figure 5 is different from Example 3 only in one instance – a 10 
MW low operating bond imposed on Generator G3 at bus C.  The LSRPs here are the 
same as in Example 3. The overall load reduction is actually 10 MW less than in 
Example 3: 20 MW less is shed at bus A but 10 MW more load is shed at bus B to 
maintain the security of line C-B and resulting in $10,000 higher value of unserved 
energy than in Example 3.  But an important distinction of this example is that it 
produces a negative impact on RCP of generator G3.  The per unit low operating bound 
for this resource is non-zero and this will reduce resource’s RCP in accordance with 
formula (42). 
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~~

~

A B

C

Generator G1
Capacity = 200 MW

Dispatch = 200 MW
Load reduction = 70
Net = 100 MW
LSRP = $10,000

Generator G2
Capacity = 200 MW 

Dispatch 200 MW
Load reduction 60 MW
Net = - 110 MW
LSRP = $30,000

Generator G3
Capacity 120 MW  Gen ≥ 10 MW

Dispatch 10 MW
LSRP = - $10,000

Load = 170 MW
Load = 370 MW                          

Load reduction ≤ 30 MW @ VOLL           
Load reduction > 30 MW @ 3 x VOLL

30
 M

W

70 MW

~

VOLL = $10,000

40 MW

40
 M

W

Example 4

UE = 130 MW
VUE = $1,900,000

 
 
Figure 5.  Example 4:  Line C-B constrained at 40 MW, uniform VOLL, load reduction at bus B is no 
longer limited, but the cost of load shedding above 30 MW is set at three times the VOLL, 10 MW 
low operating limit imposed on Generator G3. 
 

Example of the Auction Outcome 
 
Let us consider a stylized example of the auction outcome and assume that the optimal 
solution of the auction problem results in exactly four instances of demand rationing 
represented by the above four examples considered.  Each instance of demand rationing 
lasts one hour and has a probability of occurrence of 0.1/year. 
 
Reliability dispatch results under these scenarios are summarized in Table 1 below. 
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  Probability Bus A Bus B Bus C 
Generator capacities  240 220 130 
Load capacity requirements  170 370 0 
LRSPs by Scenario     

Example 1 0.1 5,000 10,000 0 
Example 2 0.1 10,000 20,000 0 
Example 3 0.1 10,000 30,000 (10,000) 
Example 4 0.1 10,000 30,000 (10,000) 

Loads Servable by Scenario     
Example 1 0.1 170 335 NA 
Example 2 0.1 160 340 NA 
Example 3 0.1 80 320 NA 
Example 4 0.1 100 310 NA 

Generator Availabilities by 
Scenario     

Example 1 0.1 83% 91% 92% 
Example 2 0.1 83% 91% 92% 
Example 3 0.1 83% 91% 92% 
Example 4 0.1 83% 91% 92% 

Generator low bound limitations     
Example 1 0.1 0.0% 0.0% 0.0% 
Example 2 0.1 0.0% 0.0% 0.0% 
Example 3 0.1 0.0% 0.0% 0.0% 

Example 4 0.1 0.0% 0.0% 7.7% 
 
Table 1.  Summary of Reliability Dispatch 
 
Note that generator capacity shown in the first line of this table are above the generator 
capacity depicted in the examples.  This discrepancy is reflected in the generator 
availabilities shown in this table. 
 
The auction outcome is summarized in Table 2. 
 
 
  Bus A Bus B Bus C System 
Mean LSRP ($/MW-yr) 3,500 9,000 (2,000)  
Load Capacity Price ($/MW-yr) 2,500 7,851  
Resource Capacity Price ($/MW-yr) 2,917 8,182 (76.92)  
Load Payments ($) 425,000 2,905,000 - 3,330,000 
Generator Receipts ($) 700,000 1,800,000 (10,000) 2,490,000 

Congestion Rent ($)  840,000 

  
Table 2.  Auction Outcome 
 
Due to transmission congestion, LSRPs on average significantly vary by location.  
Resource capacity prices differ from average LSRPs due to limitations on resource 
availability.  Moreover, due to a low bound operational limitation of generator G3 at bus 
C, this resource receives overall negative capacity price. 
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Load capacity prices also differ from average LSRPs and from resource capacity prices 
both at the same location and across locations (no load capacity price is defined for Bus 
C, because there is no load at this bus). 
 
Load payments exceed generator receipts due to congestion rent attributable to the 
constrained line C- B. 
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Nomenclature: 
 
t  - time period (e.g. hour); 
T – length of the planning horizon; 
 - index of a stochastic scenario, 1, 2,..., N  ; 

( )   - scenario probability; 

( , )f t  - vector of stochastic flows through monitored 

elements of predefined flowgates; 

( )of t  - vector of nominal flows through monitored 

elements of predefined flowgates used as a basis for 
linearization; 

( , ), ( , )f t f t   - upper and lower flowgate limits; 

( , ), ( , )F t F t  - upper and lower flowgate limits for 

linearlized system 
( , )L t  - vector of stochastic real power demands at buses; 

( )oL t - vector of nominal real power demand at buses (used 

as a basis for linearization); 
( , )p t  - vector of stochastic resource injections at buses; 

( )op t  - vector of nominal resource injections at buses(used 

as a basis for linearization); 
X - vector of rated resource capacity, also capacity 

accepted by the Auctioneer; 

( , )iis t  - per unit stochastic availability of resource; 

( , )iis t  - per unit lower bound limit on resource use due to 

operational constraints; 

( , )S t  - diagonal matrix with ( , )iis t  as diagonal elements; 

( , )S t  - diagonal matrix with ( , )iis t  as diagonal elements; 

e - vector of ones 

( , )u t  - vector of stochastic load shedding at busses; 

( , )l t  - vector of upper limits on load shedding at buses 

( , )UE t  - system-wide stochastic unserved energy due to load 

shedding 
( )EUE t - expected value of ( , )UE t   

( , )UE t   - vector of stochastic marginal unserved energy at buses; 

( )MEUE t - expected value of ( , )UE t   

LOLP - loss of load probability; 
V - vector of Values of Lost Load at buses 

( , )VUE t  -stochastic system-wide value of unserved energy; 

Y - resource capacity offered at the auction; 
c - capacity price offers at the auction; 

 
 
 

 
 

,  - auction shadow prices for selecting capacity within 

offered limits 
R - value of Auctioneer’s objective function 

( , )t  - stochastic auction shadow price for system 

balance; 
( , ), ( , )t t    - stochastic auction shadow prices for 

flowgate constraints; 
( , ), ( , )t t    - stochastic auction shadow prices for 

resource injections feasibility; 

( , ), ( , )t t     - stochastic auction shadow 

prices for load shedding feasibility; 
 - Lagrangian of the auction optimization 
problem; 
RCP - vector of resource capacity prices; 

( , )LSRP t  - locational stochastic reliability 

prices; 
RR - vector of resource receipts at the auction; 

RR - total resource receipts at the auction; 

D - vector of forecast peak demand at buses;. 
LCP - vector of load capacity prices; 
LP - vector of load payments at the auction 

LP - total load payments at the auction; 

( , )CR t  - stochastic congestion rent of 

reliability dispatch 

CR - congestion rent of the auction 

 
 
  
 
 
 
  
 
 
 
 
 


