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A 4
: Combinatorial Optimization R&D at Sandia

» Efforts are centered on two primary research thrusts

— Risk Management
» Multi-stage, general mixed-integer
 Efficient risk versus cost tradeoff analysis
 Scalable Conditional Value-at-Risk (CVVaR) computation
— Multi-Stage Stochastic Optimization
» Multi-stage, general mixed-integer
» Massively parallel environments
» Application drivers
— Contamination sensor network design (INFORMS Edelman Finalist)
— Network interdiction for critical infrastructure
— Biofuel network design
— Electrical grid generation and transmission capacity expansion
— Scalable unit commitment with large renewables penetration
* Funding sources
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Resource Allocation: Integer and Stochastic Programming

» Deterministic Mixed-Integer Programming (MIP)

— The PDE of Operations Research

min
s.T.

cz+ h'y

Ax + By <b

x € Z!(xz >0,z integer)
y € R (y > 0)

— Approximable for most real-world problems (NP-Hard)

 Stochastic Mixed-Integer Programming (SMIP)

— SMIP = MIP + uncertainty + recourse

min
S.t.
Q(x,w)

f(x) = cl'x + FHQ(x,w)]
Ax>b, x €RYTP < Z

— min q(w)'y

s.t. Wy > h(w) —T(w)x
y.E:mifjﬂﬁ ):Zﬁf

— Still NP-Hard, but far more difficult than MIP in practice
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: ' Capacity Expansion as Stochastic Mixed-Integer Programming

« Many historical planning models are either deterministic or linear (or both)

— Driven by combinations of data availability and solver maturity

« With advances in IT and solver technology, multi-stage stochastic mixed-
Integer formulations are becoming more prevalent in the literature

— Singh et al. (2009), Wang and Ryan (2010), Huang and Ahmed (2009)
— General paradigm captures key aspects of capacity expansion problems

» Key technological challenges to deploying multi-stage stochastic MIP models

— No canonical generation and transmission capacity expansion model
— Multi-stage stochastic MIP solvers are not yet general-purpose
— The difficulty of multi-stage stochastic MIPs likely requires parallelism

» Key requirement to solve the deployment barrier

— Modeling and solver framework to facilitate rapid prototyping of

slide 4 alternative solution strategies, supporting built-in parallelism Sandia
) i,



P
“¥ Stochastic Mixed-Integer Programming: The Algorithm Landscape

» The Extensive Form or Deterministic Equivalent

— Write down the full variable and constraint set for all scenarios

— Write down, either implicitly or explicitly, non-anticipativity constraints

— Attempt to solve with a commercial MIP solver

 Great If it works, but often doesn’t due to memory or time limits

» Time-stage or “vertical” decomposition

— Benders / L-shaped methods (including nested extensions)

— Pros: Well-known, exact, easy for (some) 2-stage, parallelizable

— Cons: Master problem bloating, multi-stage difficulties
 Scenario-based or “horizontal” decomposition

— Progressive hedging / Dual decomposition

— Pros: Inherently multi-stage, parallelizable, leverages specialized MIP solvers

— Cons: Heuristic (depending on algorithm), parameter tuning
 Important: Development of general multi-stage SMIP solvers is an open research area

) Sandia
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Progressive Hedging: A Review and/or Introduction

1. E:=0

o

. Forallse s, 2" .= argmin_(c-x + fo-y.): (z,9s) € Q,

3. 7 = (3. s ps d. 2t /Zﬁ_bp d

4. Forall s € S, w™ := = plas (k) — zk)

Chki=k+1

o

" .= argmin,(c- z + v Pz + p/2 H z — k1) H + fs * Us)

(
) € Q,

2R = (30 s s (is;’l‘-ikj)/ > ees Ps ds

8. Forall se S, w = wl"" + P (:z:&*") — :f?“"'})

6. Forall s € S, **

=l

(k) . (1—a)|S|
0. y( ) = > oreds bca

o) — 39

10. If ¢'® < €, then go to step 5. Otherwise, terminate.
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| Progressive Hedging as a Stochastic Mixed-Integer Heuristic

 Progressive Hedging does provably converge in the convex case, in linear time

— NOTE: As practitioners know well, linear time can take a long time

 Progressive Hedging (PH) has been successfully used as a heuristic for multi-
stage mixed-integer stochastic programming

— Lakketangen and Woodruff (1996)
— Numerous others (Birge, Gendreau, Crainc, Rel)

 Practical and critical issues of note
— How to pick p?
— Cycle detection
— Convergence acceleration
* Variable fixing
» Slamming

Progressive Innovations for a Class of Stochastic Mixed-Integer Resource Allocation Problems@ Sandia

(Watson/Woodruff, Sandia Technical Report, Journal Article Under Revision) pril |



\

e Impact of Decomposition: Biofuel Infrastructure and Logistics Planning

Biomass Harvest

Conversion to Hydrogen

Hydrogen Distribution Refueling Station

B Demand Clusters

. Sites
B Fice Fields
— Road Metwaork

D 25 B0 100 km

Example of PH Impact:
» Extensive form solve time: >20K seconds
* PH solve time: 2K seconds
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Three modes of Hydrogen Delivery:
Pipeline

Compressed Gas Truck

Liguid Truck

Slide courtesy of Professor YueYue Fan (UC Davis)
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he Impact of Decomposition: Wind Farm Network Design

» Where to site new wind farms and transmission lines in a geographically

distributed region to satisfy projected demands at minimal cost?
e Formulated as a two-stage stochastic mixed-integer program

— First stage decisions: Siting, generator/line counts

— Second stage “decisions”: Flow balance, line loss, generator levels

« 8760 scenarios representing coincident hourly wind speed, demand

» Solve with Benders: Standard and Accelerated

8

m5-BD

8

g

Number of lterations
[ (%]
s 8

8

=]

Ts51

1,600

331

1,200

400

Solution Time (minutes)

TS2 Ts2

800

m5-BD
B A-BD

600

206

1,440

728

Optimality Gap %

]

=]

i
1

%]

[}
I

H5-BD

7.2

e Summary: A non-trivial Benders variant is required for tractable solution

Slide courtesy of Dr. Richard Chen (Sandia California)
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Mean versus Risk? Some Terminology

Worst-Case
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| (CVaR) is a linear -
S0 approximation of TCE (i) o
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Progressive Hedging and Conditional Value-at-Risk

 Scenario-based decomposition of Conditional Value-at-Risk models is
conceptually straightforward (Schultz and Tiedemann 2006)

Proposition 5.1. Assume that (v is discrete with finitely many scenarios hy, ..., hy and
corresponding probabilities i, ... ,my. Let a € (0, 1). Then the stochastic program
min{Qcyqr,(x) : x € X} (11)

can be equivalently restated as

J
1 :
min {r} + E mivi @ Wy; + W"r'j- = h; —Tx,

x,v.vhun | —«

j=1
Vi > clx + qT_rj- + ijT_‘r} —n, (12)

xe X, nek, _rjEZf’E__
EJER'E vi € Ry, j=]...,.J}.

e But
— Computational issues are largely unexplored

) Sandia
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selecting Scenarios to Ignore in Stochastic Optimization:
Advances in Probabilistic Integer Programming Solvers

Ignoring the 100-year Flood Capacitated Storage Force-or_l-F_orce “Anpmalies”
(Infrastructure Planning)  (US Army Future Combat Systems) (Mission Planning)

Unmanned Alr Vehicles

6"' 4t

Central Theme: The Need to Ignore a Small Fraction o of Scenarios During Optimization

minimize c-x+y oPs(fsUs) (E)  Results for network design:
subject to: (z,ys) € Q. ‘v’s < [S:ds =1} - 2-8% better solutions
Z csPsds = (1 —a) than CPLEX, 1440m
e {0, } Vs €S versus ~10m

Impact: - Best available heuristic for solving probabilistic integer programs
- First demonstration on large-scale, real-world problems

Slide 12 @ Sanda
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J2PYOMO

An Open-Source Optimization Modeling Tool

Compute
4 HPC CIOUd EC2

DECISION NEOS Clusters
Y MAKER |

DATABASES /] —
=| DATAFILES

SPREADSHEETS

SOLVERS Open Source
Software

™

open source

Programming Language
with Batteries Included

Modeling Capabilities N Coopr Capabilities
- Abstract model definition - LP and MILP models @ p U t h O n : - Pyomo modeling language
- Manage multiple model instances - Stochastic programming - Solver interfaces

- Stochastic modeling extensions - Modeling extensions - GUI front-end

Key Features
. Parallel solver execution - Extensible framework Coopr Resources

- Interface to many data sources - Portability  Coopr installer script - Wiki documentation
- Embedded in modern programming language - Examples - Trouble tickets
- Freely available - Unrestricted open source license - Mailing lists

w7 UCDAVIS TO LEARN MORE VISIT >> _
Ao https://software.sandia.gov/pyomo () it
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Hedging Against Uncertainty:
A Modeling Language and Solver

tuff Happens J  You Adjust | More Stuff Happens
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BelowAverage.dat: Scenario-Specific Data
param MeanYield := WHEAT 2.0 CORN 2.4 SUGAR_BEETS 16 ;
AboveAverage.dat: Scenario-Specific Data

param MeanYield := WHEAT 3.0 CORN 3.6 SUGAR_BEETS 24 ;

Average.dat: Scenario-Specific Data

param MeanYield := WHEAT 2.5 CORN 3 SUGAR_BEETS 20 ;

pea-"]Y sl PySP: Stochastic Programming in Python $YcooPR

Multi-Stage Planning for What We Do: How We Do It:
Uncertain Environments  Mixed decision variables » Deterministic equivalent

. . Continuous - Scenario-based decomposition
o EXleCltIy Capture recourse . Integer/Binary + Progressive Hedging

¢ Customizable accelerators

- Uncertainty modeling framewor - General multi-stage Algebraic modeling via Pyomo

- Integrated solver strategies - Stochastic programming SMP and cluster parallelism
+ Expected value Integrated high-level language support

+ Conditional Value-at-Risk Multi-platform, unrestrictive license
+ Scenario selection Open source, actively supported by Sandia

« Cost confidence intervals Co-Managed by Sandia and COIN-OR

s Natongl
o Manacement - TOLEARN MOREVISIT> https://software.sandia.gov/trac/coopr/wiki/PySP Laboratories

Ideas into Action
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P
: Stochastic Programming and High-Performance Computing

» Decomposition algorithms for solving multi-stage stochastic mixed-integer
programs are “naturally” parallelizable

— L-shaped and Progressive Hedging are particularly amenable
 Practical issues arise as the number of scenarios grows

— Even the most modest branching processes in multi-stage decision
environments lead to thousands to millions of scenarios

— MIP solve times are heterogeneous, leading to poor parallel efficiency
 Current capabilities in PySP:

— Scalability to order-thousand scenarios and processors
* In-progress efforts
— Asynchronous decomposition algorithms
— IBM Research Blue Gene deployment
— EC2 / Gurobi deployment
» Major deployment issue: MIP solver licensing to thousands of processors

— Mitigated in part by Gurobi EC2 deployment

Slide 15 @
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M Scenario Sampling: How Many is Enough?

Discretization of the scenario tree is “standard” in stochastic programming

— Often, no mention of solution or objective stability
— Let alone rigorous statistical hypothesis-testing of stability
— Don’t trust anyone who doesn’t show you a confidence interval

Two general approaches in the literature

— Has the solution converged? (Sample Average Approximation)
— Has the objective converged? (Multiple Replication Procedure)

Formal question we are concerned with

— What is the probability that X’s objective function value is suboptimal
by more than o%?

Initial implementation available in PySP

— Preliminary results for various network expansion and design problems

. Indicates that we are using far too few samples .
Slide 16 : P (A i
Laboratories



V
>
Conclusions

» Multi-stage stochastic mixed-integer programs are a natural modeling paradigm
for solving generation/transmission capacity expansion problems

 Solver technologies capable of solving realistic instances are emerging
— But many challenges remain, both in terms of research and deployment

» Sandia is developing software to address what we view as the challenges
— Frameworks to support rapid modeling and solver prototyping
— Scalable parallelization of decomposition strategies
— Rigorous quantification of uncertainty bounds on solution costs
— Open-source solutions
 Sandia is mandated to collaborate with and aid industry — not compete

» For more information:
— https://software.sandia.gov/trac/coopr/wiki/PySP -or- jwatson@sandia.gov

) Sandia
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