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Unit Commitment Problem (Distributed Generation)

MINIMUM DOWN TIME

24
48 72

DEMAND

CO2 EMISSION

BASE
UNITS

PEAKING 
UNITS

Integer programming problem with uncertain demand & supply
-> Stochastic optimization

The heat rate of a unit is a (nonlinear) function of load -> nonlinear optimization
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Summary

• Formulations
• Primal heuristics for stochastic unit commitment
• Branch-and-cut for (stochastic) unit commitment

• Cuts for linear-cost unit commitment
• Cuts for nonlinear-cost unit commitment
• Computational results

• Scenario generation using DeepThunder forecasts
• Stochastic unit commitment vs. spinning reserves
• Further research
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Formulation:

Variables:

Data:
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Minimum up/down Constraints

Formulation:

where

A better formulation (D. Rajan and S. Takriti (2005) )

This formulation improves computation time dramatically
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Comparison of Improved Formulation
J. Goez et al (2008)
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Some additional constraint classes

 Ramping constraints
– gi,t + ki ≥ gi,t+1 gi,t - mi ≤ gi,t+1; ki & mi are ramp up/down 

rates

 Spinning reserves 

 Modeling storage

 Power flow constraints
– DC :  Linear 

– AC: Nonlinear
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Stochastic Unit Commitment with Linear 
Cost FunctionsFormulation:
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s3 s4

If two scenarios are 
indistinguishable up to 
time t, then the decisions 
for both scenarios by 
time t should be the 
same.

If                                   , 
then we add equalities                 

. We 
call the collection of this 
equalities as 
nonanticipativity 
constraints

(s1 s2 s3 s4 )

Bundle (nonanticipativity) Constraints
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Unit Commitment with Nonlinear Cost 
Functions

Formulation:

where 
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Some heuristics to generate initial (feasible) 
solutions

 Lagrangian relaxations
– Relax the bundle constraints and add a penalty 

term for violations
– Solve the s subproblems independently as a 

starting point
 LP rolling horizon heuristic

– Keep only one bundle as binary and relax the 
remaining

– Start with t0 and roll forward fixing previous 
periods

– Provides good initial feasible solutions
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Semi-continuous Knapsack

We study PS = conv(S), where
S =  { x  Rn :   aj xj ≥ b, xj  {0}[lj , uj] }

Assumption:  aj = 1

Proposition:
PS is full dimensional

( More general semi-continues cuts see I. R. de Farias “ semi-
continues cuts for Mixed-Integer Programming” ) 
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Cover Inequality

Definition:
Let C  N. We say that C is a cover if

jC uj < b

Proposition: Let C be a cover. Then the inequality

is valid for PS.
Zhao and Kalagnanam (09) strengthen this cover inequality, develops 

cover inequalities for semi-SOS2 knapsack, and proposes heuristic 
separation algorithms.
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Computational Results (Linear cost function)

• CPLEX 11.0 is used as an LP solver,
• The instance: 32 units and 72 periods,
• The instance are terminated after at most 7,200 CPU 

seconds.
• Cover and flow cover cuts are turned off for testing 

instances with user cuts.
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Computational Results – basic comparison

4.2

With user + mir cuts
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Computational Results – optimal solution
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Computational Results – root node
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Conclusions
• With user cuts, all the instance are solved to optimality and the 

time reduction is more than 80% in average.

• The difficulty lies on closing optimality gap.

• By adding cutting planes in the initial formulation, one can take 
advantages of dynamic search.
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Computational Results –Nonlinear cost 
functions

• CPLEX 11.0 is used as an LP solver,
• The instance: 72 periods, and 4 segments in piecewise 

linear functions,
• The instance are terminated after at most 3,600 CPU 

seconds.
• SOS2 concept is enforced by introducing binary 

variables to take advantages of CPLEX, since the model 
already has lots of binary variables.
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Computational Results – basic comparison

10.2

With user + mir cuts
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Computational Results – optimal solution
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Modeling Wind Intermittency

 Demand is uncertain, i.e. dt is a random variable

 Wind energy is forecast using weather models
– Wind speed and direction can be forecast but with uncertainty

– For each farm, generation gi,t is a random variable

 Assume that wind energy (subject to technical cut-in 
constraints) has to be used (regulatory)
– A must-take constraint

 Therefore the total demand can be written as 

– Dt = dt – i gi,t (a new random variable)
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Modeling Wind Intermittency
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The forecast for weather to be generated from Deep Thunder – 24-72 hr horizon
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Modeling Wind Intermittency 
Scenario Reduction using Kantorovich Distance

• Consider two sets of sample paths 
– P = (Pi),= i = 1,…,n 
– Q = (Qj), j = 1,…,m
– where Pi=(    ,…,    ), Qj=(    ,…,    ),
– and Pi has probability    , and Qj has probability     .

• Kantorovich distance between the two is 
defined as D(P,Q) = min

s.t.

where                         .
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Stochastic Unit Commitment vs. Spinning 
Reserves

• Base demand is taken 2500 MWH for 
each 85 periods.

• Stochasticity is in the wind power. All of 
the wind power is used to meet the 
demand. Thus, the net demand to be met 
by the other units is stochastic. 

• A wind-farm instance with 200 wind mills is 
considered.

• Using a scenario reduction technique, 
wind-power scenario tree is generated 
with 5, 10, 20 scenarios.
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Wind speed forecasts –Instance 1
Wind Speed Forecast for 67 Locations (Instance 1)
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Wind speed forecasts –Instance 2
Wind Speed Forecast for 64 Locations (Instance 2)
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Implicit Reserves –Instance 1
Implicit Reserves (Instance 1)
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Unmet Demand –Instance 1
Unmet Demand (Instance 1)
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Implicit Reserves –Instance 2
Implicit Reserves (Instance 2)
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Unmet Demand –Instance 2
Unmet Demand (Instance 2)

-20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 10 20 30 40 50 60 70 80 90

Periods

Ex
pe

ct
ed

 u
nm

et
 d

em
an

d

Stochastic
Exp: 0%
Exp: 10%
Exp: 20%
Exp: 30%
Exp: 40%
Exp: 50%



IBM Research

© 2009 IBM Corporation33

Further Research

 Real-life problems
– Handling power flows equations (linear vs non-linear)

– Hundreds of units

– Storage constraints

 Scenario reduction

 Scaling the problem size
– Decomposition methods: branch-and-price

– Parallel computing


