| IBM Research

Stochastic Unit Commitment

Sanzeeb Dash, Joao Goncalves,

Jay(ant) Kalagnanam, Ali Koc, Ming Zhao,

BAMS, IBM Research
Contact: jayant@us.ibm.com

© 2009 IBM Corporation




IBM Research

Unit Commltment Problem (Distributed Generation)
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Integer programming problem with uncertain demand & supply
-> Stochastic optimization
The heat rate of a unit is a (nonlinear) function of load -> nonlinear optimization
- maintenance improves heat rate and hence CO2 emissions
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Summary

Formulations
e  Primal heuristics for stochastic unit commitment
e  Branch-and-cut for (stochastic) unit commitment
 Cuts for linear-cost unit commitment
 Cuts for nonlinear-cost unit commitment
o Computational results
e  Scenario generation using DeepThunder forecasts
e  Stochastic unit commitment vs. spinning reserves
Further research
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Formulation:  min Y7 S (uaF + 5:S: + fi(ga)

s.t. S gi = dy Vi
Qillie < Gir = Qillir Vi, t
Minimal up/down constraints
Uip — U1 = Sit Vi, t
Wi, S € {0, 1} Vi, t.

Variables:

® g;; 1s generation provided by unit 7 in period ¢,

e u;; 1s a binary variable indicating if unit 7 1s up in period t.

e s;; 1s a binary variable indicating if unit 7 is started in period t.

Data:

e F is no-load cost of unit i's offer,

e 5; is startup cost of unit i's offer,

e f;(-) is cost function of unit i,

e (); and g; are the maximum/minimum generating capacity of unit i’s offer,

e d; is the load forecast in period t.
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Minimum up/down Constraints

U1 —Uip <1 —u;, TE{t+1,..., min{t + ;,T}} Vi,t.

FormUIation: ui.,f — ui,t—l ‘_: 'Hi,f,.- T E {f + 1 ..... mlﬂ{f + Li._.T}} vi,f

where

L; and [; are the minimum up/down time for generator i when it is started up or shut down respectively.

A Dbetter formulation (D. Rajan and S. Takriti (2005) )

t
Z Sir S Uy Vi t,s

T=t—L;+1
i

Z SiT =< 1 - Ui t—1; HL t,s.

T=t—1;+1

This formulation improves computation time dramatically
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Comparison of Improved Formulation
J. Goez et al (2008)

Instance Formulation | LP Time Total Time | B&B nodes

1 General 15.3 436 150
Convex hull {0.13 1 0

2 General 14.7 314 10
Convex hull [ 0.12 1 0

3 General 11.71 2240 510
Convex hull | 0.11 62 400

4 General 1.98 3290 9590
Convex hull | 0.04 46 300
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Some additional constraint classes

Ramping constraints

— 0t t*K2 g1 9it-M S Qi ki & m; are ramp up/down
rates

= Spinning reserves

= Modeling storage

= Power flow constraints
— DC : Linear
— AC: Nonlinear
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Stochastic Unit Commitment with Linear
Formulation: COSt FunCtionS

. T
min Y _P. (Ele ST (i Fy + 85,5 + Ez‘ﬂz‘t))
5.1. E?:l gft = df l'?rt'.l 5
Qiuff < Git = Qiuft Vi, t, s
Minimal up/down constraints

Nonanticipativity constraints

Uz — U7, 1 =85 vi,t, s
uf, € 10,1}, 85, € [0, 1] Vi, t, s.
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Bundle (nonanticipativity) Constraints

S1 If two scenarios are

indistinguishable up to
time t, then the decisions
for both scenarios by

\ time t should be the
same.
So

(51 S2 S3 S4) If d;' =d*Vvi<r

Sy S,

¢ Ss then we add eaualities
5 5 =
0 ul =u Vi We
call the collection of this
equalities as

nonanticipativity

t constraints
1 S,

9 © 2009 IBM Corporation



IBM Research

Unit Commitment with Nonlinear Cost
Functions

FOI‘mu|a'[I0n min Zf;l Z:l:l (Hith' + 5;5; + Zfzg fi(a?)’\ft)

s.t. S ST afAE = 4, vt
Qillis = Gir = Qiuyy Vi, t
Minimal up/down constraints
KoAE =1 Vi, t
Uit — Uip—1 = Sit Vi, t
AL Al is SOS2 Vi, t
AV u, € {0,180, AL, ... AE s, €0, 1] Vi, t.

where g.. = 325 akaE.
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Some heuristics to generate initial (feasible)
solutions

LP rolling horizon heuristic

= Lagrangian relaxations
— Relax the bundle constraints and add a penalty Scenarios | Time (s) | gap
term for violations | , 58 | 0.00%
— Solve the s subproblems independently as a ]
starting point S 137 | 0.00%
= LP rolling horizon heuristic 8 137 ] 0.03%
— Keep only one bundle as binary and relax the 11 122 | 0.06%
remaining
. o _ 14 131 | 0.05%
— Start with t, and roll forward fixing previous
periods 17 131 | 0.10%
— Provides good initial feasible solutions 20 149 | 0.10%
23 140 | 0.12%
26 155 | 0.13%
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Semi-continuous Knapsack

We study PS = conv(S), where
S={xeR": Zax=Db,xe{0}l,u]}

Assumption: a; =1

Proposition:
PS is full dimensional

( More general semi-continues cuts see I. R. de Farias “ semi-
continues cuts for Mixed-Integer Programming” )
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Cover Inequality

Definition:
Let C < N. We say that C is a cover if
iecUi<Dh

Proposition: Let C be a cover. Then the inequality
i =1
j;;c i —
Is valid for PS.

Zhao and Kalagnanam (09) strengthen this cover inequality, develops
cover inequalities for semi-SOS2 knapsack, and proposes heuristic
separation algorithms.
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Computational Results (Linear cost function)

e
- T
- T

PLEX 11.0 1s used as an LP solver,
ne instance: 32 units and 72 periods,

ne instance are terminated after at most 7,200 CPU

seconds.

« C

over and flow cover cuts are turned off for testing

Instances with user cuts.

14

© 2009 IBM Corporation



IBM Research

Computational Results — basic comparison

CPLEX DS CPLEX B&C With user + mir cuts Reduc.%

Prob. || Node | Time Node | Time | Gap% || Node | Time | # cuts || Node | Time

2.1 2,209 606 7,427 | 2,202 1,249 193 310 83.2 91.3

2.2 999 402 3,150 779 901 165 176 71.4 21.2

2.3 684 238 1.825 555 417 83 173 77.2 85.0

3.1 3,270 | 1,264 || 19.873 * 0.07 || 4,473 863 370

3.2 967 431 8,063 | 2,725 1,790 248 284 T7.8 90.9

3.3 1,136 667 || 10,317 * 0.06 || 1,577 400 338

4.1 1,213 | 1,116 8,150 * 0.13 || 3,302 | 1,351 406

4.2 1,334 018 || 13,968 * 0.06 || 2,503 613 412

4.3 2,158 | 1,698 || 12,701 * 0.14 || 8,568 | 1,653 507

5.1 4530 | 5892 7616 * 0.17 || 14970 | 5673 642

5.2 1533 | 1977 6524 * 0.10 4010 | 1396 494

5.3 2521 | 3108 7301 * 0.14 || 13471 | 2596 650

4 scenarios, 2nd instance o 7 All variables 14,000 — 35,000

e # Binary variables 4,600 — 11,500

e # Constraints 20,000 — 50,000

15 © 2009 IBM Corporation



16

IBM Research

Computational Results — optimal solution

CPLEX DS CPLEX B&C With user cuts
Prob. || Node | Time | Gap% | Red.% || Node | Time | Gap% | Red.% || Node | Time | Gap%
2.1 2,200 606 0.01 79.9 4,137 | 1,223 0.09 90.0 640 122 0.07
2.2 a79 395 0.00 7.5 1,000 296 012 70.0 440 =9 0.09
2.3 320 126 0.21 548 1,000 340 .08 823.2 250 K7 0.04
3.1 2034 | 1,153 0.01 25.6 4,410 R5E 0.07
3.2 967 431 0.00 83.1 2,189 BTT 0.12 91.7 310 73 0.09
3.3 Q05 BT 0.21 47.0 4,100 | 2,604 0.08 =209.0 =239 205 0.04
4.1 G40 623 0.06 33.1 605 417 0.08
4.2 974 642 0.03 24.0 4,000 | 1,740 0.12 72.0 1,552 488 0.02
4.3 Th2 653 0.09 -55.7 1,000 615 0.25 -65.3 4,000 1017 0.04
5.1 4072 5210 0.02 85.0 1100 1023 0.25 23.6 933 TE2 0.09
5.2 1048 1279 0.04 3.7 1000 1165 .19 -5.7 2000 1232 0.02
5.3 1230 1352 0.08 28.0 3100 2631 0.18 63.0 2100 973 0.05
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Computational Results — root node

Without user cuts || With user cuts

Prob. || Time Gap% | Time Gap%
2.1 20 0.77 19 0.41
2.2 29 0.34 17 0.28
2.3 27 0.83 19 0.13
3.1 77 0.41 37 0.34
3.2 42 0.69 18 0.12
3.3 41 0.97 25 0.20
41 80 0.43 37 2.42
4.2 53 0.70 30 0.21
4.3 82 0.43 48 0.28
5.1 88 0.49 5 0.36
5.2 07 2.71 74 0.20
5.3 07 2.80 89 0.21
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Conclusions

With user cuts, all the instance are solved to optimality and the
time reduction is more than 80% In average.

The difficulty lies on closing optimality gap.

By adding cutting planes in the initial formulation, one can take
advantages of dynamic search.
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Computational Results —Nonlinear cost
functions

CPLEX 11.01s used as an LP solver,

The Instance: 72 periods, and 4 segments in piecewise
linear functions,

The Instance are terminated after at most 3,600 CPU
seconds.

SOS2 concept Is enforced by introducing binary
variables to take advantages of CPLEX, since the model
already has lots of binary variables.
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Computational Results — basic comparison

CPLEX Default With user + mir cuts Reduc.%

Prob. Node | Time | Gap™% Node | Time | # cuts | Node | Time

7.1 7,727 21 208 2 673 97.3 90.5
7.2 || 1,154,200 * 0.01 5,569 17 762
7.3 || 1,138,300 * 0.02 460 3 575
X8.1 || 1,160,900 | 2,416 0.10 13,463 a7 1,702

8.2 21,500 63 49 2 T87 99.8 097.1

8.3 132,700 524 676 6 1,080 99.5 08.9
X0.1 || 1,040,300 | 2,067 0.09 76,425 523 2,194
X9.2 || 1,078,600 | 3,006 0.02 415 6 1,283
X9.3 || 1,014,100 | 1,741 0.11 35,104 218 1,900
10.1 873,400 * 0.08 2,464 69 2,379
10.2 | 838,800 * 0.08 5,684 107 2,368
X10.3 908,100 | 3,039 0.11 || 118,073 304 2,507

10 lll'litS, 21nd instance o # All variables 4,000 - 5,000
e # Binary variables 1,500 — 2,100

o # Constraints 4,200 - 6,000
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Computational Results — optimal solution

CPLEX Default With user cuts Reduc.%
Prob. Node | Time | gap% || Node | Time | gap% Time
7.1 1,522 8 0.02 184 2 0.00 75.0
7.2 69,902 79 | 0.04 4,329 14 0.02 92.2
7.3 88,608 248 | 0.05 320 2 0.07 99.2
8.1 28,621 73| 0.14 || 13.168 96 0.00 -31.5
8.2 583 6| 0.04 48 1 0.00 83.3
8.3 36,185 117 | 0.02 407 4 0.03 96.6
9.1 71,940 488 0.01
9.2 223 4 0.02
9.3 || 1.009,196 | 3,246 | 0.11 || 30,896 193 0.01 94.1
10.1 5,524 38 | 0.23 2,374 i 0.01 -76.3
10.2 133,580 598 | 0.11 4,380 03 0.02 84.4
10.3 52,500 371 0.02
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Modeling Wind Intermittency

Demand is uncertain, i.e. d, is a random variable

Wind energy is forecast using weather models
— Wind speed and direction can be forecast but with uncertainty

— For each farm, generation g;, is a random variable

Assume that wind energy (subject to technical cut-in
constraints) has to be used (regulatory)

— A must-take constraint

Therefore the total demand can be written as

— D;=d,— 2, gi; (a new random variable)
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Modeling Wind Intermittency

Sy

t
The forecast for weather to be generated from Deep Thunder — 24-72 hr horizon
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Deep Thunder — Forecasts for
Weather-Sensitive Operations

= Problem: weather-sensitive business
operations are often reactive to short-term (3
to 36 hours), local conditions (city, county,
state) due to unavailability of appropriate
predicted data at this scale

— Energy, transportation, agriculture, insurance,
broadcasting, sports, entertainment, tourism,

construction, communications, emergency planning and
security warnings

= Solution: application of reliable, affordable,
weather models for predictive & proactive TELY
decision making & operational planning 1

url‘ac otal Preci pitation and ' :
Cloud Water Dens{iy: aiate0s
— Numerical weather forecasts coupled to business

processes

— Products and operations customized to business
problems

— Competitive advantage -- efficiency, safety, security and
economic & societal benefit

\
Tual “rovighation fir)
o - 4 {5 i

© Copyright IBM Corporation 2007

© 2009 IBM Corporation




IBM Research

Modeling Wind Intermittency

Scenario Reduction using Kantorovich Distance

« Consider two sets of sample paths
—-P=(P)=i=1,...n
-Q=(Q),j=1,...m
— where P=(p;,...,0; ), QJ-=(0I} 0,
— and P, has probability p;, and Q, has probability T; .
« Kantorovich distance between the two is
defined as D(P,Q) = min 3 x,

X; 20 ]

st. Yx =7

. t t D% =7
where C; =>.Ipi -0\, =i
t=1
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Stochastic Unit Commitment vs. Spinning
Reserves

Base demand is taken 2500 MWH for
each 85 periods.

Stochasticity is in the wind power. All of
the wind power is used to meet the
demand. Thus, the net demand to be met
by the other units is stochastic.

A wind-farm instance with 200 wind mills is
considered.

Using a scenario reduction technique,
wind-power scenario tree is generated
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Wind speed forecasts —Instance 1

Wind Speed Forecast for 67 Locations (Instance 1)
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Wind speed forecasts —Instance 2

Wind Speed Forecast for 64 Locations (Instance 2)
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Implicit Reserves —Instance 1

. Costs
Implicit Reserves (Instance 1)
. Stochastic:
80.00% -
’ $ 1,105,955
70.00% Exp-20%:
$1,131,847
60.00% -
" Impr: 2.29%

$ 50.00%
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[
o o | \ ——Exp: 0%
= 40.00% Exp: 10%
= P ! Exp: 20%
£ 30.00% - ~

20.00% - -
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000% T T T T T T T T 1
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Periods
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Unmet Demand —Instance 1

Unmet Demand (Instance 1)
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Implicit Reserves —Instance 2

Costs
Implicit Reserves (Instance 2)
Stochastic:
700.00% $1,131,510
- o -
600.00% - EXp 50 A)'
$1,237,099
500.00% Impr: 8.54%
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Unmet Demand —Instance 2

Expected unmet demand

Unmet Demand (Instance 2)
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Further Research

= Real-life problems
— Handling power flows equations (linear vs non-linear)

— Hundreds of units
— Storage constraints
= Scenario reduction
= Scaling the problem size
— Decomposition methods: branch-and-price

— Parallel computing
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