Unit Commitment at the CAISO

Mark Rothleder
Director of Market Analysis and Development

FERC Conference on Unit Commitment Software
June 2-3, 2010
New Market – April 1, 2010

- New Day-Ahead and Real-Time nodal energy market started April 1, 2010
- Mixed Integer Program (MIP)
- Number of generators and integer variables
 - ~ 1000 units /
 - ~ 35,000 variables
- Number of bids:

<table>
<thead>
<tr>
<th>Market (Horizon)</th>
<th>Number of Energy Bids (Approx.)</th>
<th>Number of Ancillary Service Bids (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generation</td>
<td>Interchange</td>
</tr>
<tr>
<td>Day-Ahead Market (per 24 hours)</td>
<td>14,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Real-Time Pre Dispatch (per 2 hours)</td>
<td>1,000</td>
<td>700</td>
</tr>
<tr>
<td>Real-Time Dispatch (per 2 hours)</td>
<td>1,000</td>
<td>14 Dynamic</td>
</tr>
</tbody>
</table>

- Full Network Model:
 - 4000 nodes,
 - 2100 Loads,
 - 7000 lines, 200 XFMRs
- AC modeling of active power losses (Newton-Raphson Powerflow)
Facts about the Solution

- 1 Security Constrained Unit Commitment (SCUC) pass:
 - 3-4 MIP-PF/CA iterations
 - Each MIP iteration with two passes i.e. 1 scheduling and 1 pricing run
- 1 Security Constrained Dynamic Dispatch (SCDD) pass:
 - 1 MIP iteration with two passes i.e. 1 scheduling and 1 pricing run
 - Multiple interval ramping and forbidden operating region constraint enforced
- DAM 24 hour simultaneous intervals run ~ 1 hour computing time for 4 SCUC passes
 - 2 SCUC passes, 1 – Market Power Mitigation / Reliability Requirements (LMPM)
 - 1 SCUC pass – Integrated Forward Market (Energy and A/S)
 - 1 SCUC pass – Residual Unit Commitment
- RT Unit Commitment executed every 15’ up to 18-15’ intervals ahead ~ 12’ computing time for 3 SCUC passes
 - 2 SCUC passes, 1 – Market Power Mitigation / Reliability Requirements
 - 1 SCUC pass, Real-Time Unit Commitment and A/S procurement
- RT Dispatch executed every 5’ up to 13 - 5’ intervals ~ 2.5’ computing time
 - 1 SCDD pass, Security Constrained Dynamic Dispatch
- MIP Gap ~ 0.1% for 24 hour DA-Integrated Forward Market runs in about 10-20 min
- Observed more constraints enforced sometimes results in faster solution within MIP Gap
Constraints

- Large number of transmission constraints from AC Powerflow / Contingency Analysis
 - Up to 2000 binding constraint for 24 intervals,
 - Up to 150 AC contingencies simulated every market time interval
- Corridor Constraints
- Nomogram Constraints
 - Simultaneous interface vs. interface limits or interface vs. gen output limits,
 - Minimum On-line Commitment Constraints
- Intertie Constraints
 - Scheduling Limits
 - Wheeling Constraints
 - Multi-hour block
- Resource Constraints
 - Dynamic ramp rates: Different ramp-rates at different operating levels
 - Minimum up time, minimum down time, maximum starts/day
 - Resource Startup costs and startup times as functions of off time
 - Forbidden Region of Operation
 - Energy Limitation Constraints: Maximum amount of energy or hours of availability
- Pump/Storage Modeling
 - Decision regarding pumping or generation operational mode
Other Features

- Fully integrated multi-interval Ancillary Service and Energy Co-optimization in DAM and RTPD
 - Decision to procure A/S based on resources constraints and energy/AS bid prices
 - Competition of energy and AS on inter-ties
 - Ancillary Services (Spin, Non-Spin, Regulation-up and Regulation-down)
 - Cascading Services (Higher Quality service can substitute for Lower Quality)
 - Nested regional requirements
- Integrated bilateral and spot market with priorities for self-schedules curtailment controlled by uneconomic adjustments i.e. separate scheduling and pricing runs
- Compensating injections to handle loop flows in real-time
- Constrained Output Generator (COG) (Pmin = Pmax) Dispatch and Pricing
- Scarcity Pricing
- Metered-Sub System Load Following
- Proxy Demand Response
Market and Performance Initiatives

- Modeling of Combined Cycle Resources (Multi-Stage Modeling)
 - Multiple Start-up functions
 - Start-up decisions of different stages
- Startup MW profiles
- Enhance Forbidden Region with Hold-Time Constraints
 - Must stay above forbidden region for specified period of time
- Demand Response
 - Curtailment Decisions
 - Shut-down constraints
 - Linkages between different demand
- Convergence Bidding
- Multi-Day Optimization
 - Improve cross-day unit commitment decision making and avoid unnecessary cycling
Other Future Developments

- Integration with voltage and stability assessment tools
- Simultaneous market power mitigation, residual unit commitment and market solutions
- Renewable integration
 - Additional market products to accommodate ramping / load following needs
- Battery/Storage devices participation
- Integrated preventive/corrective control in handling contingency cases
- Co-optimization of energy, AS, and active power losses i.e. integrated active/reactive optimization
- Switching operations as controls
- Dynamic transmission limits as functions of equipment connectivity statuses
- Application of Priorities
 - Possible replacement of penalty functions to enforce scheduling priorities (i.e. ETC, RMR, TOR, Self-Schedules….)
Day-ahead and real-time prices have been about equal to a perfectly competitive baseline.
Ancillary service costs have decreased due to co-optimization.

[Graph showing the decrease in ancillary service costs per MWh of load and as a percentage of energy cost from 2005 to 2009.]
Exceptional Dispatch volumes continue to decrease as effort to incorporate constraint into the market continues.

Approx. 3% of total daily energy

Approx. 1% of total daily energy
Day-Ahead Market Publish Beats Timelines By an Average of 30 minutes

2010 DA Publish Time

Day-Ahead Market Timeline 1pm
Day-Ahead Market Completion Trend
Real-time market completions have been near 100%.

2010 HASP / RTD Success Rate

Percent of Interval Successful

Date

January | February | March | April | May (through 5/27)

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 100%

Hour-Ahead Sch Process | Real-Time Dispatch

California ISO