Topological and Impedance Element Ranking (TIER) of the Bulk-Power System

Bernie Lesieutre Chris DeMarco Dan Schwarting
University of Wisconsin-Madison

FERC, September 2009
University of Wisconsin-Madison/ Department of Electrical and Computer Engineering

Bulk-Power System vs. Distribution

FERC/FPA: The term ‘bulk-power system’ means: a) facilities and operating systems necessary for operating an interconnected electric energy transmission network (or any portion thereof); and b) electric energy from generation facilities needed to maintain transmission system reliability. The term does not include facilities used in the local distribution of electric energy. (Federal Power Act, Section 215a.)

NERC: Bulk Electric System: As defined by the Regional Reliability Organization, the electrical generation resources, transmission lines, interconnections with neighboring systems, and associated equipment, generally operated at voltages of 100 kV or higher. Radial transmission facilities serving only load with one transmission source are generally not included in this definition.
Goal

Our Task: An approach to distinguish those facilities that should/should not be considered part of the Bulk-Power System based on the network layout (“topology”) and electrical properties of connections.

Approach

Our Approach: Rank/Classify components by their potential to impact capacity resource dispatch.

Optimization Formulation: Used to uniquely relate and measure the components potential impact.
Background

Optimization Terminology

• Objective: minimize some “Objective” or “Cost” function:

\[
\min_x C(x)
\]

“Cost” Function

Examples: Production Costs, Energy Loss …

Decision variables – adjusted to meet optimum
Example: Production

• Constraints: Additional conditions that must be satisfied.

\[
f(x, y) = 0
\]

“Equality Constraints” often represent fundamental laws.

Examples: Conservation of Energy, Kirchhoff’s Laws …

\[
g(x, y) \leq 0
\]

“Inequality Constraints” often represent practical limits.

Examples: Thermal, Voltage, stability limits (often by proxy)
Background

Optimization Terminology

• **Lagrange Multipliers**: Traditional method for Constrained Optimization

\[
\min_{x,y,\lambda} L(x, y, \lambda) = C(x) + \lambda f(x, y)
\]

The constraint is included in an augmented “cost” function, multiplied by a “lagrange multiplier, \(\lambda\).

The Optimal solution is obtained using basic calculus: partial derivatives with respect to variables are set equal to zero.

Impact

- **No Impact**
- **Impact**

\[
\lambda = 0 \quad \text{No Impact}
\]

\[
\lambda \neq 0 \quad \text{Impact}
\]

Examples:

- LMP
- Flowgate “shadow prices”
Background

In terms of an optimization problem

- We are interested in how a branch constraint impacts a bus constraint through the network.

 branch flow constraint \rightarrow generator dispatch

- We compare the corresponding lagrange multipliers.

- We are NOT interested in cost.

Background

- Assume power system operated optimally, but DO NOT assume knowledge of objective functions being optimized.

- Could use $/hr$ operating cost as familiar objective (many other possibilities exist).

 BUT KEY POINT: $\$ COSTS DO NOT IMPACT METHOD.$
Background

• Q: How can cost to be optimized *not matter*?

• A: Use properties that arise purely out of network constraints inherent in any power system optimization problem.
 for the mathematicians…

Optimization identifies *pattern* of Lagrange multipliers associated with each element constraint – these patterns yield rankings.

Background: Optimization

DC Optimal Power Flow – optimize while constraining one facility at a time:

\[
\begin{align*}
\min_{P_g, \theta} & \quad \text{Cost}(P_g) \\
\text{subject to} & \quad P_{\text{injected}} = ABA^T \theta \\
& \quad P_{\text{line}} = b_{\text{line}} A_{\text{line}}^T \theta = P_{\text{limit}}
\end{align*}
\]

Cost (production $/hr typical - but again, choice here does not matter!)

Network Constraints (power balance at each bus)

Single Facility Constraint (flow limit on a line or transformer)
Background: Optimization

Incorporate the constraints into an augmented “Lagrangian” cost function:

$$\min_{P_g, \theta} \mathcal{L}(P_g, \theta) = \text{Cost}(P_g) + \lambda^T (P_{\text{injected}} - ABA^T \theta) + \mu_{\text{line}} (P_{\text{limit}} - b_{\text{line}} A_{\text{line}}^T \theta)$$

First-year calculus tells us conditions that must be satisfied at any optimal solution …

Network Property of Optimal Solution

These are (part of) necessary conditions for optimal solution - those that are independent of cost

- Lagrange multipliers at buses
- In familiar cases these are Bus LMPs in $/\text{MWh}$
- Redispacth $$/\text{MWh}$
Background: Optimization

\[\frac{\partial L(P, \theta)}{\partial \theta} = -A^T B^T A \lambda - A_{\text{line}} b_{\text{line}} \mu_{\text{line}} = 0 \]

This couples constrained element (via scalar \(\mu \)), to allowable patterns in the \(\lambda \)'s

Topology information in matrix “A”

Components properties in matrix “B” and scalar “b”

Here \(\lambda \) is a vector of quantities, related to dispatch at every connection point (\(\lambda \)'s are bus LMPs in market case). \(\mu \) is a single scalar quantity, associated with a single line or transformer to be ranked.

So Far…

• Set up representation for optimal operation of the power system.

• Extract those conditions that have to do **ONLY** with network constraints.

• Important to emphasize –DEPENDENCE ON COST/OBJECTIVE FUNCTION WILL “DROP OUT” IN RESULT OF METHOD.
Next Step: Rankings

• With no line or transformer constrained, only possible pattern is all λ's exactly equal (case of uniform LMPs in familiar market case)
• Constraints purely in distribution system can’t alter these equal λ’s at generators.
• However, constraints in the transmission network can yield unequal λ’s at generators.

Rank each component by degree to which it moves generator λ’s (e.g., LMP profiles) away from uniform, all equal pattern.

Small Example

• 9 buses
• 10 lines
• 3 generators
Small Example

The bus Lagrange multipliers can be expressed in ratio to the network Lagrange multipliers.

<table>
<thead>
<tr>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(\lambda_3)</th>
<th>(\lambda_4)</th>
<th>(\lambda_5)</th>
<th>(\lambda_6)</th>
<th>(\lambda_7)</th>
<th>(\lambda_8)</th>
<th>(\lambda_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.40</td>
<td>-0.23</td>
<td>-0.14</td>
<td>0.04</td>
<td>0.40</td>
<td>-0.23</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.89</td>
</tr>
<tr>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>-0.89</td>
</tr>
</tbody>
</table>

LMP

“Energy Component”

“Congestion Component”

Focus on how each column shapes the pattern at dispatchable buses (i.e., at generators).
Examine the effect of line L7 (radial load).
Yields no impact on dispatchable network resources
(i.e., values are all uniform at generator buses).

In contrast, line L1 *does* affect values at dispatchable network resources - no longer all equal.
So Far…

• Introduced an element ranking approach based on the degree to which it moves generator λ.’s away from uniform, all equal pattern.
• Mathematically expressed as a unit-less sensitivity between bus and network lagrange multipliers – independent of cost function.
• Illustrated with a small example.

Small Example

Q: How to measure (with single numeric indicator) degree to which λ.’s for dispatchable resources deviate from the all-equal case? (larger deviation indicates larger and more “network-wide” impact).

A: Choose the standard deviation of λ profile as single numeric measure of departure from the unconstrained, all-equal case.
Small Example

Lines and their computed metrics: standard deviation of generator bus Lagrange multipliers, due to line constraint.

Results: PJM Model

- ~8000 buses
- ~9000 lines
- Detailed representation of lower-voltage, subtransmission, and distribution buses
- 875 Generators
- Detailed representation outside of PJM
 - 7000 additional buses
 - 8000 additional lines

Computation time for Lagrange sensitivities to all 9000 lines: 6 minutes.
Results: PJM Model

- Distribution of TIER Values
 Logarithmic plot, voltages color-coded

![Graph showing distribution of TIER values with voltages color-coded.]

Results: PJM System

- Typical TIER Values
 (excluding lines to radial loads, radial generators, and ties to non-PJM areas)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Low</th>
<th>Average</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>765 kV</td>
<td>0.0220</td>
<td>0.072</td>
<td>0.263</td>
</tr>
<tr>
<td>500 kV</td>
<td>0.0021</td>
<td>0.059</td>
<td>0.217</td>
</tr>
<tr>
<td>345 kV</td>
<td>0.00013</td>
<td>0.023</td>
<td>0.093</td>
</tr>
<tr>
<td>230 kV</td>
<td>3.5 x 10^{-6}</td>
<td>0.021</td>
<td>0.095</td>
</tr>
<tr>
<td>138/115 kV</td>
<td>9.4 x 10^{-6}</td>
<td>0.010</td>
<td>0.082</td>
</tr>
<tr>
<td>69 kV</td>
<td>4.2 x 10^{-5}</td>
<td>0.0072</td>
<td>0.050</td>
</tr>
<tr>
<td><69 kV</td>
<td>9.1 x 10^{-7}</td>
<td>0.0045</td>
<td>0.026</td>
</tr>
</tbody>
</table>
Results: PJM System

- Sample Sensitivity Plots
 - Radial load (no variation in λ, implies value = 0)

- Generator step-up transformer (value = 0.0336)
Results: PJM System

• Sample Sensitivity Plots
 – Highest importance value for 500 kV line

Results: PJM System

• Importance values produced here were reviewed by FERC staff and PJM engineers, very familiar with system.
• Overall pattern of rankings confirmed as reasonable.
• Moreover, seeming anomalies examined, and confirmed as consistent with the specifics of the given topology.
Discussion

- The highest EHV level components, when networked, have a high TIER.
- Radial loads have zero TIER.
- The degree to which elements are networked, i.e., the topology, has major impact on the TIER results.

Discussion

Eastern Interconnect TIER (US only)
60000 branches, 6000 generators