RISK MANAGEMENT OF DAMS SUBJECTED TO EXTREME NATURAL HAZARDS

analytical, policy and quality assurance considerations

Des Hartford
Uncertain!

• The domain of dam safety involves much uncertainty
 > Uncertainty in:
 • loads
 – natural hazards
 – design loads
 • dam performance
 • dam failure consequences

• All of which should be characterised probabilistically
 > But are generally dealt with deterministically
Dimensions of Dam Safety

• Safety Policy
 > the job of government
 • through regulators

• Safety Analysis
 > the job of engineers and scientists
 • existing methods and new approaches derived from research

• Safety Assessment
 > Traditionally the job of owners - to convince the regulator that the dam is “safe”
 • more realistically that the dam is safe enough
 – but few want to admit to this!
Owner–regulator–engineer challenge

• To state precisely what the endeavour of dam safety assurance entails
 > Is it the avoidance of dam failure at all costs?
 • “Absolute Safety”
 > Is it the avoidance of dam failure at “reasonable” cost
 • “Safe Enough”
 – What constitutes “reasonable” cost?
 » The answer to this question is a policy/political matter.

• How do we measure “safety”?
 > The ability to “measure” being fundamental to engineering science and engineering practice
Safety policy

A matter for owners and regulators
Safe enough or absolutely safe?

- Dam owners who are liable for the consequences of dam failure, and
- Dam regulators who are responsible for safeguarding the interests of the public

> should have a rational and transparent means of explaining what is meant by a “safe dam”

- definitions of what constitute a “safe dam” are difficult to find
 - perhaps look outside the dams community
 » where the myth of absolute safety dominates
 - and see that safety is defined in terms of risk

> Conclusion is that *Safe Enough* is the goal to be striven for

- absolute safety is unachievable
Societal safety in general

Maximum safety possible

“Safety at any cost”

“Societal” accepted relationship between “equity” and “efficiency”
Dams in the context of societal safety

Level of Safety Provided

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
Safety parameters

“y = mA + c”

“x = A”

“c = y”

SOCIETAL PARAMETERS

c ≤ y ≤ y
1 ≤ A ≤ ((y - c)/m)
0 ≤ m ≤

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
Alternative policy parameters

“$y = y_{\text{max}}$”

“$c = y_{\text{min}}$”

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.
Generalised safety framework for dams

- Base safety level
- permanent population at risk -
Policy reality

• Risk assessment provides the most complete characterisation of the safety issue
 > It is also the most complex way to characterise safety

• Designing for the “hazard” with no “factors of safety” on the response is an option
 > Generally not done

• Designing to the “hazard” with “factors of safety” on the response is another option
 > Traditional practice
Policy challenge

• Decide whether safety of dams should be assessed in terms of:
 > Deterministic standards (PMF, MCE, design rules)
 • Possibly linked to the consequences of dam failure
 – Linear or non-linear way?
 > Probability of hazard
 • e.g. 100 year flood or the 10^{-4}/yr natural hazard event
 – Consider the design parameters for levees post Hurricane Katrina
 > Probability of failure
 • Integrated over the full ranges of hazard loads and dam responses
 > Risk
 • Full probabilistic characterisation of the combinations of hazards, dam responses and failure consequences
PMF and MCE

- The PMF is simply a large flood
- The MCE is simply a large earthquake
 > May be very conservative in the local context
 • **May not** be very large by global standards
 > Are not the physical maxima
 > Are not invariant instruments of public safety policy with respect to
 • Location
 • The state of scientific knowledge or, the people developing them
 > Are not strictly “deterministic” constructs
 • The extent of probabilistic characterisation varies with the extent of the scientific knowledge available
 > Do not necessarily provide the upper bound of “achievable safety”
 > Do not necessarily lead to consistently high levels of safety in different parts of the same jurisdiction
ALARP considerations

• PMF and MCE do not necessarily maximise safety by reducing risk “As Low As Reasonably Practicable”
 > If it is reasonably practicable to provide performance capacity that exceeds the PMF and/or MCE performance than the additional capacity should be provided.
 • e.g. concrete dam with PMF spillway designed to withstand overtopping
 • e.g. earthfill dam with liquefaction failure mode eliminated
 – Such a dam could well withstand earthquakes larger than the site specific MCE

• The ALARP demonstration requires joint consideration of all “hazards”, and the associated “dam response”
“Hazard” and “Dam Response”

- Mean load
- Mean safety margin
- Nominal safety margin
- Design load
- Design resistance
- Mean resistance

Denotes "Probability of Failure"
Probability of Hazard × Probability of Failure given Hazard

Annual Exceedance Frequency

Distributions of probability of failure

Uncertainty in Ground-motion Parameters (Probability)
Probability of Failure

Reliable power, at low cost, for generations. Reliable power for future generations.

14-02-2006

BC Hydro

The "10,000"
Natural hazards, dam response and risk

Reliable power, at low cost, for generations.
Towards a rational approach....

• Risk analysis
 > Provides the most comprehensive means of characterising the safety of dams
 • Explicit treatment of all uncertainties
 – Transparent and founded in sound science
 – Necessarily embodies all attributes of traditional analysis
 • Goes beyond traditional analysis
 – Traditional analysis practice is embodied in the risk analysis approach
 » As a subset
 > A comprehensive risk analysis will include loads and responses outside the range of traditional practice
 • Risk analysis demands more comprehensive analysis
The problem of the “unknowable”!

• Impossible to know if an estimate of risk is a good estimate
 > If probability of event is very low and nothing happens
 • then one might be tempted to assume that it is a good estimate
 – this is not the case
 – similarly for events that occur when previously two very different estimates of the probability of the event (0.1 and 0.00001) were estimated independently
 » impossible to determine if the event that occurred was the 0.1 or 0.00001 event!

• This problem is not unique to risk analysis
 > same problem with traditional practice,
 • How does one assure quality of engineering judgement?
Dangers of judgements of probability

• Sound judgement: a vital part of good engineering
 > safety assessment is arguably not engineering because nothing is being “engineered”
 > safety assessment is arguably “engineering science”
 • “engineering science”:- the development of reliable knowledge concerning matters of engineering.
 » safety assessment involves inferences from incomplete and uncertain data:- the domain of scientific inference

• Judging probability is notoriously difficult
 > rigorous qualification of experts and adherence to the rules of scientific inference is the only safeguard against inadequate judgements
 • deterministic or probabilistic
Going straight to the point: – safety assessment in terms of “risk”

The integrated form of the policy and analytical considerations
PAR AND LOSS OF LIFE

<table>
<thead>
<tr>
<th>Season</th>
<th>PAR (Spring/Summer)</th>
<th>PAR (Fall)</th>
<th>PAR (Winter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION

- NEAR DAM LOCATION
- ENTIRE INUNDATED AREA
- DISTANT LOCATION

PAR (Spring/Summer) = Population at Risk

Probability of Failure

Consequences of Failure

Tolerable region

Unacceptable region

Safety Management Objective

- Risks are "Tolerable"
- Risks have been reduced as low as reasonably practicable "ALARP"
- Actions are "Precautionary" in proportion to "Uncertainty" and "Consequences of Failure"

Risks to Individuals

Societal Risk
“Established” criteria

- Extrapolation of R2P2 intolerability point
- Proposed limit of tolerability for loss of life above bank full
- UK local intolerability line
- Hong Kong intolerability line
- Hong Kong negligible line
- UK negligible line
- Major hazards of transport
- Netherlands intolerability line
- Damage

Detailed analysis - UK

Proposed limit of tolerability for loss of life above bank full
Two examples
Ruskin Dam

130 m long
58 m high
Tolerability of Risk Framework

SIMPLIFIED MATRIX APPROACH

<table>
<thead>
<tr>
<th>N</th>
<th>1.0E-09</th>
<th>1.0E-08</th>
<th>1.0E-07</th>
<th>1.0E-06</th>
<th>1.0E-05</th>
<th>1.0E-04</th>
<th>1.0E-03</th>
<th>1.0E-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrapolation of (R_2 P_2) intolerability point</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recreational Risk

- Dam crest (now)
- Dam body (now)
- Dam crest (fix)
- Dam body (fix)

UK Broadly Acceptable

CDA Guidelines

FERC (West USA)

USBR (broadly acceptable)

UK Tolerable

14-02-2006
Detailed quantitative risk analysis

Displ. Exaggeration: 2.0
10.0 M Displacement

Reservoir Level: 440.0; (s_r)_2 = 500. psf; \(\gamma_{lim} = 15\% \)
Probabilities of earth dam failure $M=6.5$, all PGA’s

Bounded Estimate of Probability of Failure ($M = 6.5$)

Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations. Reliable power, at low cost, for generations.

14-02-2006
Loss of life scenarios

SIMPLIFIED MATRIX APPROACH

Acceptable “traditional practice”

Extrapolation of R2P2 intolerability point

Minimum (FERC) for west US dams

Canadian Dam Safety Guidelines

Concrete dam

UK Broadly Acceptable

UK Tolerable

Keenleyside Earthfill Dam

Unacceptable “traditional practice”
Some comments on “ALARP”

• It is not sufficient for the estimated probability of failure meet one or several numerical Risk Tolerability criteria
 > Nor is it sufficient to meet numerical risk tolerability criteria and some Cost:Benefit criterion
 • These considerations are only the starting point.

• The remainder of the ALARP demonstration involves explaining:
 > what level of safety is physically achievable i.e. what is practicable
 > why the safest of the physically achievable options was not selected
 • why other options that provide more safety than the option that was selected were not chosen
 > justifying the selection to the regulator and the affected public
 • Demonstrating reasonableness – a “societal value” judgement, not an “engineering judgement”
Some conclusions

• Dam safety assessment is not an “exact science”
 > Dam safety assessment can be a “rigorous science”
 • if dam owners, dam safety regulators and the engineering profession want it to be!
 – Given the consequences of dam failure, why is rigorous engineering science not a requirement of dam safety assessment?
 » why are dam owners and regulators not demanding it?

• Risk analysis provides the framework for scientific rigour and transparency in dam safety assessment
 > risk assessment provides a means of compensating for the weaknesses in traditional practice
 • why not use it?
References

Risk and Uncertainty in Dam Safety

By D.N.D. Hartford and G.B. Baecher on behalf of:

BC Hydro, Bureau of Reclamation, Corps of Engineers, Hydro Quebec, Manitoba Hydro, Ontario Power Generation, Scottish & Southern Energy and Vattenfall

Published by Thomas Telford, available through ASCE

ICOLD Bulletin 130: *Risk Assessment in Dam Safety Management*,

14-02-2006