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Abstract and Executive Summary

Understanding AC Optimal Power Flow (ACOPF) is important because a one percent
improvement in a power system dispatch can save roughly tens of billion dollars
annually. In this paper, we formulate the ACOPF in several ways, compare each
formulation’s properties, and argue that the current-voltage (/V) formulation and its
linear approximations may be easier to solve than the traditional quadratic power
flow formulations. Unlike the DC model that holds voltage constant, ignores reactive
power and assumes small voltage angle differences, the /Vformulation solves a
linear system of equations without decomposition, unnecessary constraints or
omissions. The nonconvex constraints need careful consideration. For problems
that are solved repetitively with minor variations, there is considerable potential for
individual parameter tuning and preprocessed constraints. For example, constraints
on angles and past iteratively added constraints may be able to help. Initial results
indicate that the /Vformulation and its linear approximations have promise to meet
practical computational requirements. In addition, steady-state quadrature
constraints on generators are linear in the /Vformulation and can be included in the
formulation. Additional formulation testing and computational testing are needed to
determine commercial feasibility. If a linear /Vapproximation to the ACOPF proves
promising, it can be embedded in the unit commitment models, optimal topology
models and other formulations that use binary variables. This allows the use of
mixed integer linear programs (MIP) algorithms that are exceptionally fast and
robust to better model the power markets.

Disclaimer: The views presented are the personal views of the authors and not the
Federal Energy Regulatory Commission or any of its Commissioners.
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1. Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is
important—a one percent improvement in dispatch derived from better solutions to
this problem can save roughly 1 to 5 billion dollars per year in the US, or 4 to 20
billion dollars per year in the world (see Cain 2012). In this paper, we formulate the
ACOPF in several ways, compare each formulation’s properties, and argue that the
current-voltage (/V) formulation and its linear approximations may be easier to
solve than the traditional quadratic power flow formulation.

We focus on the linear approximation because the linear program solvers are
robust and fast and the power systems community is already familiar with linear
programs for economic dispatch. The linear program approximation constructs
linear relaxations of convex constraints and linear first order approximations to the
non-convex constraints. If a linear /VVapproximation to the ACOPF proves promising,
it can be embedded in the unit commitment models, optimal topology models and
other formulations that use binary variables. This allows the use of mixed integer
program (MIP) algorithms that are exceptionally fast and robust to better model the
power markets. Since both MIP algorithms and computer hardware continue to
improve, today’s proof-of-concept software may be tomorrow’s commercial
standard. Power system optimization has evolved with improvements in computer
hardware and optimization software. In companion papers, we present more detail
on the formulations and on several test problems. We also examine some of the
arguments presented here with success.

The optimal power flow (OPF) problem finds the optimal solution to an
objective function subject to the power flow constraints. There are a variety of OPF
formulations with different constraints, different objective functions, and different
solution methods that have been labeled optimal power flow. The simplest optimal
power flow model is known as the “Direct Current (DC) OPF”. It uses a linearized
approximation of the AC power flow equations and linear constraints. Formulations
that use the AC power flow equations are known as “AC OPF.” The ACOPF
formulations are continuous nonconvex optimization problems without binary
variables. For more detail, see Cain et al (2012). Most nonlinear solvers only find
local optimal solutions for nonconvex problems.

2. Notation

When nand m are subscripts, they index buses; kindexes each three-phase
transmission element between buses nand m. When jis not a superscript, j= (-
1)1/2; the complex current is Z When jis a superscript, it is the ‘imaginary’ part of a
complex number, while an rsuperscript is the ‘real’ part. Unless specified otherwise,
scalars and complex numbers are lower case. Generally, in (¥,)%, xis a variable or
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parameter, y further defines the variable or parameter, zis a member of an index
set, w is an exponent.

Unless specified otherwise, matrices are upper case. All vectors are column
vectors and T superscript represents a transpose operation. The element-by-
element or Hadamard product is e. If diag(A) is a square matrix with A on the
diagonal and zeroes elsewhere, diag(A)diag(B) = diag(AeB). The complex conjugate
operator is * (superscript) and * (no superscript) is an optimal solution.

We assume balanced three-phase steady-state conditions. All variables are
associated with a single-line model of a balanced three-phase system. A common
practice in power system modeling is the per-unit (p.u.) representation, where base
quantities for voltage, current, power, and impedance (or admittance) may fully
define a power network. Such normalization is a convenience.

The topology of the network consists of locations known as buses or nodes
and transmission elements connecting paired buses. The network is an undirected
graph with weighted edges or lines.

Indices and Sets

n, mare bus (node) indices; n, me {1, ..., N} where nis the number of buses.

kis a three-phase transmission element index. Each transmission element khas a
pair of terminal buses nand m. ke {1, ..., K} where kis the number of transmission
elements

K is the number of a connected bus pairs (K < K).

Unless otherwise stated, summations () are over the full set of indices.

Variables

Pnis the real power injection (positive) or withdrawal (negative) at bus n

gnis the reactive power injection or withdrawal at bus n

Sn = Pn + Jqnis the net complex power injection at bus n

Pnmikis the real power flow at bus nto bus m on transmission element &

gnmk is the reactive power flow at bus nto bus m on transmission element &

6, is the voltage phase angle at bus n

Gnm = 6y - O is the voltage phase angle differences from bus nto bus m

Inis the current (complex phasor) injection (positive) or withdrawal (negative) at
bus n where i, =i, + ji,

Inmk1s the current (complex phasor) flow into transmission element kat bus 7 (to
bus m); Inmk = Fpmk + JPnmk

Snmk is the apparent complex power flow into bus 7 on transmission element k (to
bus m); Sumk = STamk + JFnmk

vnis the complex voltage at bus n. v, = vy, + jv/,

Vumik is the complex admittance on transmission element 4 connecting bus 7 and bus
m (If buses nand m are not connected directly, yym= 0.);

Vnis the self-admittance (to ground) at bus n.
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Vnm is the complex admittance connecting bus 7 and bus m for all transmission
elements kbetween buses nand m.
V= (vy .., vw)T is the complex vector of bus voltages; V= 1" +jV/
I= (i, ..., In)T is the complex vector of bus current injections; / = I + jI
P=(pys, .., pn)7 is the vector of real power injections
Q= (qy .., gn)" is the vector of reactive power injections
Gis the N-by-N conductance matrix
Bis the N-by-N suseptance matrix
Note that elements of G and B will be constant for passive transmission elements
such as transmission lines, but can be variable when active transmission elements
such as phase shifting transformers, switched capacitors/reactors, or FACTs devices
are included.
Y = G + jBis the complex admittance N-by-N matrix
Functions and Transformations
Re() is the real part of a complex number, for example, Re(i, + jiy) = iy
Im( ) is the real part of a complex number, for example, Im(/, + jiy) = ¥
| | is the magnitude of a complex number, for example, | vi| = [(v)2+(7y)2]1/2
abs( ) is the absolute value function.
The transformation from rectangular to polar coordinates for voltage is:
V'n = | va|cos(6n)
Vip = | va|sin(6y)
(V)2 + (Vn)? = [| vu[sin(En)]? + [| valcos(n)]? = | va|?[sin(En)? + cos(En)?] = | val?
We drop the bus index nand let &be the voltage angle and dbe the current angle.
For real power, p = vir+ v = |v|i|cos(8-9) and for reactive power, g = vi’- vV =
| V]i|sin(8- &) where €- J'is the power angle.
Parameters
I'nmk 1S the resistance of transmission element k.
Xamk 1S the inductance of transmission element k.
smax; is the apparent power thermal limit on transmission element kat both
terminal buses.
imax; is the current limit on transmission element kat both terminal buses.
@i, @max,, are the maximum and minimum voltage angle differences between n
and m
pming,, pmax, are the maximum and minimum real power for generator n
gmin, gmax, are the maximum and minimum reactive power for generator n
C1=(cly, .., cty)Tand Cz = (c?y, ..., c2y)T are vectors of linear and quadratic objective
function cost coefficients respectively.

Inmk = anme_VnmkVn - dnmk)nmkVm

Imnk = ~-AnmkVnmkVa + VamkVin
For the phase shifting transformer (PAR) with a phase angle shift of ¢,
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Vin/Vin = tamk = anmk€?

inm/jmn = tamk" = -Anmk€7?

The current-voltage equations for the phase shifting transformer kbetween buses n
and mare:

Inmk = anmkzynmkVn - tnmkiVnmka

Imnk = ~ComkVnmkVn + VamkVm
Admittance Matrix. If there are no transformers or flexible AC
transmission system (FACTS) devices, G'is positive semidefinite and B is negative
semidefinite. A matrix where y,, > abs(},m Vum) is called diagonally dominant and
strictly diagonally dominant if y,, > abs(}. m yam).

If there are no transformers and y, = 0, Gand B are weighted Laplacian
matrices of the undirected weighted graph that describes the transmission network.
Much is known about the weighted Laplacian matrices. ¥is a complex weighted
Laplacian matrix. If abs(y,) << abs(};myam) close to 0, we will call Yan approximate
complex weighted Laplacian.

Y= G+jB. Gand Bare real symmetric diagonally dominant matrices. A
symmetric diagonally dominant matrix has a symmetric factorization, for example, B
= UUT where each column of U has at most two non-zeros and the non-zeroes have
the same absolute value.

If there are transformers and FACTS devices, let Vamkx be Vamk, @ nmi®Vami
tomk Vamk OF ~tamkVamkVn as appropriate off-diagonal element, then yu, = yu + Yim
Vomis Yam = Y.k Vomk and Yis the matrix [yum]. If there are only ideal in-phase
transformers, the Y'matrix is symmetric. If there are phase shifting transformers, the
symmetry of the Y'matrix is lost.

For large problems, the admittance matrix, Y= G+jB, is usually sparse. The
density of both Gand Bis (N+2K")/N? where K’ is the number of off-diagonal non-
zero entries (the aggregate of multiple transmission elements between adjacent
busses) and nis the number of buses. For example, in a topology with 1000 buses
and 1500 transmission elements, ¢and Bwould have a density of
(10004+3000)/10002 =.004. The lowest density for a connected network is the
spanning tree. It has N-1 transmission elements and the density is (N+2(N-1))/N2.
For large sparse systems, (N+2(N-1))/N2 = 3/N.

Page 7



3. AC Flow Equations
Kirchhoff’s current law. Kirchhoff’s current law requires that the sum of the currents
injected and withdrawn at bus n equal zero:

in= Zkinmk (1)
If we define the ground to be bus 0, current to ground to be yu(v,- w) and = 0, we
have:

in= Zk}’nmk( Vn- Vm) + VaVan (2)
Current is a linear function of voltage. Rearranging,
in= Vn(_Vn + Zk_Vnmk) - Yk VamkVin (3)

Expanding, we obtain
inmk = YamiVa= Vi) = umi(Vin= V')~ Domi Vin= Vi) + j(Bomi(Vin= Vim) +Lnmi V/n-
Vim))
where i%pmik = gumi Via- V'm) = bBamk(Vin- Vi) and
Vomk = Dumk(Vin- Vim) + Zami Vin- Vim)
In matrix notation, the /Vflow equations in terms of current (/) and voltage (V) in
(3) are
=YV =(G+JB)(V" +jV) =GV - BV + j(BV' + GV)) (4)
where ["= GV'- BVand V= BV + GV
In another matrix format, (4) is
1=l 0) =XV, MTor

1=(1r,1/)=[g g] [ﬁ] wheref=[g GB]

If a and ¢ are constant, the /=YVequations are linear. If not, the linearity is lost
since the some elements of the Y'matrix are variable. Discrete setting on the
transmission assets like PARs and FACTS devices can be modeled with binary
variables, but otherwise retain linearity.

Power flow equations. The traditional rectangular real power (), reactive power
(@) and voltage (V) power flow equations (PQV) are

S=P+jQ=diag(V)I'=diag(V)[YV]" =diag(N V'V (5)
The power injections are

S=Vel'= (V4 jV)e(Ir-jU) = (VeI + Ve b)) + j( Ve l- Ve ) (6)

where

P= Ve[ + VieJ (7)

Q= Vil -Vre) (8)

The PQVpower flow equations, (5) and (6), are quadratic. The /Vflow equations (4)
are linear.
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4. Generator, Load, Transmission, Voltage, and Angle Constraints

We present the bus level constraints in terms of the current and voltage at each bus.
Generator and Load Constraints. The standard but simplified representation of
generator is used in most ACOPF formulation. The lower and upper bound
constraints for generation (injection) and load (withdrawal) at bus n are:

prin,< p < pmax, 9

grin, < g < gmAx, (10)
In terms of vand

Vil + Vinlly < pmax, (1)

Py < Viplly 4 Vin (12)

Vinl'y - Viphiy < gmax, (13)

gy < Vinln - Vinn (14)

Inequalities (11)-(14) along with other thermal constraints on equipment enforced
at each generator bus constitute a four-dimensional ‘D-curve’ in the /Vspace; (11)-
(14) are non-convex constraints. Additional D-curves defining the tradeoff between
real and reactive power are circles in the p-gplane, are their intersection of
constitutes a convex set and can be easily linearized. Since here we model a single
period, ramp rates are unnecessary. The model is easily extended to multiple
periods.
Voltage constraints. The two constraints that limit the voltage magnitude in
rectangular coordinates at each bus nare

(Vin)? +(vn)? < (vmaxy)? (15)

(vmin,)2 < (V)2 +(Vn)? (16)
Again, each nonlinear inequality involves only the voltages at bus n. The inequality
depicted in (15) is a convex constraint but the one in (16) is not.
Line Flow Constraints. The thermal transmission limit on k, sm2x;, is a based on the
asset materials ability to withstand temperature increases. As current increases,
lines sag and equipment may be damaged by overheating. Transmission assets
generally have three progressively larger thermal ratings: steady-state, 4 hour and
30 minute. The apparent power at non kto mis:

Snmk = Velnmk = Vn_Vnmk( Vn- Vm) = VnVnmkVn- VaVnmkVm.
The thermal limit on Sum« is

(o) >+ (Fmmi)? = | Spmi] > < (57242 (17)
These constraints are quadratic in s”zmxand S/»mi and quartic in v, Vi, Vi, Vin.

For the /Vformulation, the constraints that limit the current magnitude in
rectangular coordinates at each bus non kare

(a2 +(Fami)? < (9% (18)
Again, the nonlinearities are convex quadratic and isolated to the complex current at
the bus. The inequality in (18) is a convex constraint. Generally, the maximum
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currents, /2, are determined by material science studies. Limiting current may
be a better physical constraint then limiting apparent power.

Voltage Angle Constraints. The power flowing over an AC line is approximately
proportional to the sine of the voltage phase-angle difference at the receiving and
transmitting ends. For stability reasons, the terminal-buses voltage-angle
differences on transmission elements can be constrained as follows:

ity < Gn - Om < 0% (19)
In the rectangular formulation, the arctan function appears in some constraints.
gmin,, < arctan(V,/ viy) - arctan(Vim/ vim) < 07y, (20)

5. ACOPF Formulation
Objective function. For a generator, the cost of generation is a function of the
apparent power generated, c(8) = cp(P) + co(Q), where S= (P+@)1/2. Most of the
literature assumes co( Q) = 0 and cp(P) is quadratic in 2. There is little empirical
evidence for these assumptions and they may have been made to fit the nonlinear
solver. There is evidence that the cost functions are better approximated by
piecewise linear functions. With binary variables and linear functions, there is no
need to assume that the generator cost function is monotonic non-decreasing. All
ISOs use piecewise linear functions. If we assume that the cost of reactive power is
small compared to the cost of real power and if the cost function, c(S), is linear in S,
an approximation of c(S) is

c(8) = cp(P) + co(/Q))-
For most generators, the normal operating range is | | < 0.3 2. The absolute value
function, | ¢, can be made a linear function with the transformation | Q| = ¢*+ ¢ and
Q= @*-@ where @*, ¢ = 0. By virtue of the minimization and the constraint
formulation, @*e @ = 0.
If there is a value function for load or demand, d(S), the objective function is to
maximize the market benefits from trade, d(S) - ¢(S). Similar arguments hold to
simplify d(S) but are beyond the scope of this paper.
Rectangular Power Voltage Formulation The rectangular power voltage (rectangular
PQV) ACOPF (rectangular ACOPF-PQV) formulation is:

Network-wide objective function: Min ¢(S) (21)
Network-wide constraint: P +jQ =S = Vel = Ve Y V* (22)
Bus-specific constraints

pmin < p< pmax (23)
QU< Q < @ (24)
Vie I + Ve I < (V/max)2 (25)
(Vmim)2 < Vre Vi + Vie lJ (26)
(Snmr)? < (smaxy)? for all k (27)
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Gmin, ., < arctan( v,/ viy) - arctan(Vig/ vim) < 6ma%,, (28)
In this formulation, network-wide constraints in (22) are 2N quadratic equalities
that apply throughout the network; the bus-specific constraints in (23)-(24) are
simple variable bounds at each bus; the constraints in (25) are convex quadratic
inequalities at each bus; the constraints in (26) are nonconvex quadratic
inequalities at each bus; the constraints in (27) are quartic inequalities in vani at
each bus; and the constraints in (28) are nonconvex inequalities.
Polar Power Voltage Formulation The polar power voltage (polar PQV) ACOPF
(polar ACOPF-PQV) replaces quadratic equality constraints in (22) with the polar
formulation of (22):
Network-wide constraints:

Pn= Y, mk VaVin(ZumkCOS Opm + DumiSinbum) for all n (29)
Gn =Y, mk VaVi(ZnmkSIN Onm - DamiCOS Onm) ~ for all n (30)
(25) - (26) isreplaced by  Vmin < V< [max (31)-(32)
(28) is replaced by oming, < On- On < 073, forallmm (33)

In this formulation, the network-wide (29)-(30) are 2N nonlinear equality
constraints with quadratic terms and sine and cosine functions that apply
throughout the network. The arctan functions disappear in the angle difference
constraints.

Rectangular ACOPF-I1V formulation. The rectangular ACOPF-I Vformulation is:

Network-wide objective function: Min c(S) (34)

Network-wide constraint: / = YV (35)

Bus-specific constraints:
P=Vrefr + Vie) < Pmax (36)
prin< P= Vrefr + Ve (37)
Q= Vel - Ve < Qmax (38)
Quin< Q= Vel - Vo) (39)
Ve IF + Ve IV < ((Vmax)2 (40)
(Vmimy2 < Vrer + Ve lJ (41)
(Fami)? + (Fami)? < (7m2)?2 for all k (42)
omin,, < arctan( v,/ viy) - arctan(Vin/ vim) < 0m%, (43)

In this formulation, the constraints in (35) are 2N linear equality constraints that
apply throughout the network. This is in contrast to the PQVformulations where
quadratic and trigonometric constraints apply throughout the network and linear
constraints are isolated at each bus. The constraints in (36) - (39) are locally
quadratic and non-convex. The constraints in (40) and (42) are convex locally
quadratic inequality constraints, but the ones in (41) are non-convex locally
quadratic inequality constraints. Overall, the constraint set is still non-convex, but it
would appear that this formulation may be easier to solve since the nonlinearities
are isolated to each bus and each transmission element, while the constraint that
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applies throughout the network is linear. The constraint in (43) could be eliminated
by using the constraints in (42) as a surrogate and the problem becomes locally
quadratic with linear network equations.

The /Vformulation has 6N variables (£, Q, V%, V, I, /) and the polar PQVhas 4N
variables (£, @ | V], O).

6. The Linear Approximations to the I VFormulation
A judicious choice of constraint formulations may produce better approximations.
We take two approaches to constraint formulation. If the constraint is convex, we
add linear cutting planes to remove from the linear feasible region points that are
infeasible in the nonlinear formulation. If the constraint is non-convex, we use the
first order Taylor series approximation to the constraint and update it after optimal
iteration of the linear program.
Taylor’s series. The Taylor series approximation for a function of nvariables,
f(X) where X= (x1, ..., xn) is
In matrix notation,

f(X) = f(X) + (X (XX) + (X2 (D) (X-X) + o[ (X-X) « (X-X)+(X-X)]
where f'(X) = [(0f(X)/0x1), ... 0f(X)/0xn)]" is the Jacobian vector and

f’(X) = [0%€(X) /0 x10 x| is the Hessian matrix.

Convexity. If f(X) is convex and differentiable, f(X) = f(X) + f'(X)T(X-X) or

f(X) - £ (DT = f(X) - £ (DX
and f”(X) is positive semidefinite.
If f(X) < ferand f(X) = f(X) - (X)X + (XX

f(X) -fA™X + £ (XN)TX fup
is a relaxation of the convex constraint that includes the feasible set, but excludes X.
If flow < £(X), and f(X) = f(X) - F (X)X + £ (XN)TX

flow < f(X) - F(X)TX + £ (X)X
is not a conservative linear approximation and not a convex constraint and we may
need to limit the linear approximation to small excursions from f(X), for example,

flow = max{flow, rf(X)} where r is the acceptable range of the approximation.
Linear Voltage Approximations. We can linearize the voltage constraint with a first
order Taylor’s series approximation about (17, ¥). at each bus n, the voltage
magnitude approximation is

VgVl + VipVip = VipVin + VpVin + Zl/rn( Vi L’rn)+ 22711( Vip— L/jn) (4‘4‘)
Collecting terms, we obtain
ViaVip + VigViy = 2V Vg + 2V Vi -ViaVin - VinVin (4‘5)

The Hessian is
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Vin Vi
. . : 2 0 Vin
02(|va|2) /0 V0 Vi = 02(ViuViy + VipVip) JO VR0 Vi = [ 0 2 ] " (46)

Since the Hessian is positive definite, the voltage magnitude function is convex, (40)
is a convex constraint and (41) is a non-convex constraint.
Iterative Voltage Constraints. Let v, v/, be the optimal solution to the LP
approximation that may violate the nonlinear constraint (40). We can add a linear
constraint to create an outer bound on the constraint set.
Leta = v,/v,

ViuVin+ VinVin = ViuVin + a2vipvin = (1+32)L/rn_ -
If viovi, + vinv, = (1+ aZ)L’rnl/rn > (Vmaxn 2,

reset v, = sign(a)[(v®2x,)2/(14+a%)]/2and v, = av’,
Now v, ¥, is a point on the maximum voltage constraint (40).

add the linear constraint: v7,v,+ v,v, < (vmax,;)2 (47)
(47) cuts off the linear program solution, and is tangent to and contains (40).
Figure 1 illustrates the new constraint where the shaded area is the non-convex
feasible region of the maximum and minimum voltage at a bus. Since the maximum
voltage constraint is convex, the outer approximation linear constraints on
maximum voltage contain the feasible region.
Figure 1. Adding a maximum-voltage linear constraint.

i

(v, Vi)

&
"

The outer approximation can accumulate iteratively and/or can be generated as a

part of preprocessing without eliminating any part of the feasible solution. We can
create a linear approximation by the following process. We can choose several
points on the boundary of the maximum voltage constraint and add the outer
linearization to the formulation in the preprocessing.
Preprocessed Voltage Constraints. We can start with simple linear bounds on the
maximum voltage, if v/, = 0, the outer linearization constraint at the voltage angles 0
and T,

-ymax, < v < vinax, (48)
if v, = 0, the outer linearizations at the voltage angles /2 and 3m/2 are:
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-ymaxy, <yl < pimax, (49)
We also bound at /4 and 5nt/4, v',= v/, at the boundary:

ViaVin+ VipVip = 2Vipviy = (vmax,)2
the tangent points are v, = + vmax,/21/2and v, = +2-1/2ymax,
The constraints at m/4 and 5n/4 are:

-2 2ymax, < pr, 4 pi, < 21/2 pmax, (50)
In a similar manner, at 3nt/4 and 71t/4, with v,= -V, the constraints are:
-2 2ymax, < yr, - i, < 21/2 pmax, (51)

Inequalities (48), (49), (50) and (51) create polygon constraints as shown in Figure
2.
Figure 2. Regular 8-polygon bounds on voltage variables

Non-Convex Minimum Voltage Constraints. For a minimum voltage constraint, since
it is non-convex, the linear approximation is more problematic. This may be a
serious problem. Since higher losses occur at lower voltages, the natural tendency of
the optimization will be toward higher voltages. It is an inner approximation and
eliminates parts of the feasible region (see figure 4). Although this may be
reasonable, we cannot accumulate these constraints and should relinearize after
each linear program pass.
Let v, V,be the optimal solution to the LP approximation and assume it violates
the nonlinear nonconvex constraint (41). Let v, = av,. If viuvis + Vv, < (viin,)2,
reset v, = sign(a)[(v™in,)2/(1+a2)]/? and v, = av,
Add the linear constraint:
VaVip+ VnVip = (vmin,)?2 (52)
Figure 4. Adding a minimum-voltage linear constraint.




If we have voltage angle constraints, there may be a better idea. If there are voltage
angle constraints, a linear representation of the voltage constraints may be at hand.
If we add a constraint, ymin, < v7,. Let v, - a1V, < 0 and v, + a2, < 0 represent
voltage angle constraints. The resulting constraint set is convex, see Figure 5 and
contains most of the nonconvex constraint set. The stability of the power system is a
function of the angle differences.

Figure 5. Minimum-voltage with voltage angle constraints

Vi

s
8
When combined with a maximum voltage linearization, the approximation
formulation could be preprocessed to obtain a good fit to the nonlinear constraints.
Since the natural process of optimization pushes the voltage higher to avoid losses,
the minimum voltage constraint is only approximated when it is violated.

Linear Approximation of Thermal Transmission Constraints

The constraints that limit MVA flow, (27), and the constraint on current flow
perform similar functions. There are no minimum current constraints. To eliminate

subscript clutter, we will drop the subscripts nand m, that is, 7pmk 7nmicbecomes iy,
Ji. Similar to the maximum voltage constraints, we can linearize the current

N

constraint with a first order Taylor’s series approximation about (#umk #nm«)
P+ Ui = e+ D+ 2060(Fk- 1) + 2 0P r) (53)
Collecting terms, we obtain the linear approximation is:
il + Uil = 21l kc+ 2 0idi - Fidi - Pk (54)
The Hessian is
Iy by

2 0 |r
H(i) = 02| i2) /0 ird i = 02(irxirx+ idi) [0 = [ . ] ;" (55)
k

Since the Hessian is positive definite, the current magnitude function is convex in
(', 7x). In the /Vformulation, the current magnitude is functionally the same as the
voltage magnitude.
Preprocessed Current Constraints. We can start with simple linear bounds on the
maximum current, if 74 = 0, the outer linearization constraint the current angles 0
and T,

- < < jmaxy (56)
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If 7= 0, the outer linearizations at the current angles /2 and 31/2 are:
-maxy < < pmaxy (57)
Inequalities (56) and (57) create box constraints as shown in Figure 2.
We also bound at /4 and 51t/4, i'x= #) at the boundary:
i+ Bl = Fpdte= (imaxg)2 /2.
The constraints at /4 and 5nt/4 are:

-21/2 jmaxy < e+ Py < 21/2 fmaxy (58)
At 31t/4 and 7mt/4, with /x= -/, the constraints are:

-21/2 fmaxy < Jrye- i < 2172 fmaxy (59)
Inequalities (56), (57), (58) and (59) create the polygon constraints shown in
Figure 2.

Iterative Current Constraints. Let /%, Zxbe the optimal solution to the LP
approximation that may violate the nonlinear constraint. We develop the maximum
current constraints in a similar manner to the maximum voltage constraints. We can
add a linear constraint to create an outer bound on the constraint set.
Leta = Fp/ i'g If il + Fidle > (173%%)2,

reset 'y = sign(a)[(im2xx)2/(1+a?)]|/2and Fx= ai’x

add the linear constraint: Fxifx+ Fiily < (imaxy)?2 (60)
If we change the voltage variables to current variables, Figure 1 illustrates the new
constraint where the outer circle defines the boundary of the convex feasible region
(for current there is no inner circle minimum constraint). Since the max current
constraint is convex, the outer approximation linear constraints on maximum
current contain the nonlinear feasible region.
The outer approximation can accumulate iteratively and/or can be generated as a
part of prepossessing without eliminating any part of the feasible solution. We can
create a linear approximation by the following process. We can choose several
points on the boundary of the maximum current constraint and add the outer
linearization to the formulation in the prepossessing. As experience with this model
increases, the constraints can be chosen based on experience and specific system
behavior.
Voltage-angle difference constraints serve the purpose of limiting the line flows, but
in rectangular coordinates are not convex. Limiting current flow has a similar effect,
but the current flow limits are convex. Therefore, substituting current for angle
constraints may be a better computational formulation.
Real Power Constraints. Constraints, (36) - (37), are real power generator
constraints. At each bus n, p, is the sum of two hyperbolas in the real and imaginary
planes. We can linearize them with a first order approximation as follows:

Pn= Vipi'n + Viniliy

x Vefl + Vo + Ve + Vi + vie il + Viej- (Vei + Ve + vie i+ vei)  (61)
collecting terms, we obtain
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p~ = Vpl'n + Vinplly + Vipl'n + Viphy- (L’rn_irn + ﬂn_ljn) (62)
The Hessian is

I/rll Ij’l] 1 1'” 1] n

0 0 1 0 Viy
h(po=0tpudvidi=| o oLV (63)

1 0 0 0 I,

0 1 0 0 7y

The Hessian is an indefinite symmetric matrix with 2 eigenvalues equal to 1 and 2
eigenvalues equal to -1. Since the Hessian is indefinite, the real power function is
non-convex. We add constraints:
pmin . pmin < p~ < pmax 4. prmax (64)
where Prmin and Prmax > ( with high objective function coefficients.
Reactive Power Constraints. Similarly, for reactive power,
G = Vinl'n - Vnkn - Vindn + Vinl'n - (Vnl'n - VnFn) (65)
The Hessian is
Vin Vin In  Jn
0O 0 0 -1 Vn

0 0 1 0 Vin
h 262 na nan: 66
(9) Gn/0 Vi1 0o 1 0 0 i (66)
-1 0 O 0 yn

The Hessian is an indefinite symmetric matrix consisting with 2 eigenvalues equal to
1 and 2 eigenvalues equal to -1. Since the Hessian is indefinite, the reactive power
function is non-convex. We added the constraints:

Quin - Qmin < @~ < Qx4 Qrmax (67)

where @min > 0 and @r»2x > 0 with high objective function coefficients

7. Conclusions

Unlike the DC model that holds V constant, ignores reactive power and assumes
small angle differences, the /Vformulation solves a linear system of equations
without decomposition, unnecessary constraints or omissions. The nonconvex
constraints need careful consideration. It appears that the /VVformulation and its
linear approximations have promise to meet practical computational requirements.
For problems that are solved repetitively with minor variations, there is
considerable potential for individual parameter tuning and preprocessed
constraints. For example, constraints on angles and past iteratively added
constraints may be able to help. In addition, steady-state quadrature constraints on
generators are linear in the /VVformulation and can be included in the formulation.
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Additional formulation testing and computational testing are needed to determine
commercial feasibility. If a linear /Vapproximation to the ACOPF proves promising,
it can be embedded in the unit commitment models, optimal topology models and
other formulations that use binary variables. This allows the use of MIP algorithms
that are exceptionally fast and robust to better model the power markets.
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