Risk Limiting Dispatch

FERC Technical Conference on Increasing Market Efficiency
June 28, 2011
Washington, DC

Pravin Varaiya (Berkeley), Felix Wu (HKU), Janusz Bialek, Chris Dent (Durham), Ram Rajagopal (Stanford)
Robert Entriken (EPRI)
Outline

• EPRI PRISM 2.0 Insights
• Examples of Uncertainty
• Dispatch Issues
• Enhanced Dispatch Vision
• Risk Limiting Dispatch
• Summary
• Discussion
Prism “Test Drive” Insights

Source: EPRI Prism 2.0 Study

- Efficiency and renewables grow
- Managed transition for existing coal fleet

© 2011 Electric Power Research Institute, Inc. All rights reserved.
What We Are Seeing…

• Response to emission regulations, renewables, and natural gas discoveries
 – Coal retirements offset by new renewables
 – New natural gas plants

• Renewable integration impacts
 – More balancing resources
 – Thermal fleet cycling -> increased O&M

• In the long term
 – Nuclear and CCS will be important
 – Without them, we rely on more renewables & efficiency
Example of New Uncertainty

Could you predict the production for this wind park either day-ahead or 5 hours in advance?

Each Day is a different color.

Source: California ISO

Tehachapi Wind Generation in April – 2005
Typical Dispatch

Constraints
- Power balance
- Operating Limits
- Contingencies

Objective
- Min. cost
 s.t. feasible power flow

Uncertainties:
- Load Forecasting
- Forced outage of equipment
- Increasing amounts of wind and solar power

Source: Bialek, Varaiya, and Wu
Forecast Error vs. Forecast Horizon

Source: Iberdrola Renewables
Dispatch Dilemma System Operators

• Operators must reserve sufficient capacity to meet the worst-case uncertainty in supply
• Errors in day-ahead wind forecasts regarded as “uncertain”
• Intermittent power as statistically unpredictable
• The worst case scenario is full cut-off
• Planned wind expansion requires enhanced dispatch
Enhanced Dispatch Procedures Require

• Availability of sensors for more accurate prediction over shorter time periods

• Probabilistic forecasts for less familiar technologies:
 – Renewables
 – Plug-in Electric Vehicles
 – Demand Response

• Stochastic Optimization to enable reliability assessment and efficient scheduling
Risk-Limiting Dispatch Goals

Establish a framework for evaluating benefits of

- Multiple settlements
- Decreasing forecast errors

Modify dispatch procedures so that:

- Combine intermittent resources with storage, demand-management, Plug-in Electric Vehicles (PEVs)
- Operate the new portfolio just as reliably
- Manage the cost of reserves to support uncertainty
- Requires smart grid infrastructure for enhanced communication and control
Compare Multi-Settlement Strategies

- **2-settlements**: Transact only points 1 (DA) and 10 (RT)
- **10-settlements**: Transact at all 10 points

Decreasing Forecast Error towards RT

Normalized Benefit of 10 vs. 2 Settlements

\[
\frac{(2\text{-stage cost} - 10\text{-stage cost})}{10\text{-stage cost}}
\]
Increasing the Opportunities to Adjust

• System flexibility is the key attribute needed to respond to uncertainties
• The more opportunities system operators have to adjust supply and demand resources the greater the financial benefits
• The key is finding the optimal frequency and timing of resource adjustments
• Benefits can be quantified
• The frequency and timing of iterative adjustments be brought increasingly closer to the scenario arising from “perfect information"
Summary

• Current practice of worst-case dispatch requires subsidies for renewable sources and demand response
• Better wind forecasting
• More refined control suggest shift to risk-limiting dispatch
• Rapid coordination (both preventive and corrective) with demand response and energy storage
Questions & Discussion
Together…Shaping the Future of Electricity
Appendix
Scenarios: Timing

• All stages are only for buying 1 hour of energy.
• 4 Stage Market at day-ahead (24 hours), hour ahead, 15 min ahead and Real Time.
• 3 Stage Market at day ahead, hour ahead and real-time.
• Oracle scenario.
Scenarios: Cost

- Per MWh cost of 4 stages:
 - $52.00 (day ahead)
 - $60.00 (hour ahead)
 - $72.00 (15 minutes ahead)
 - $1000.00 (RT, “loss of load”)
Cost Comparison
Additional Cost of 3 stage over 4 stage

Maximum is $1.73 per MWh at D = 0.04 p.u.
Comparing Dispatch

- Understand how resources are used by comparing distributions of dispatch at each stage

- Consider $D = 0.04 \text{ p.u.}$ and $D = 0.5 \text{ p.u.}$

- Plot: % use in 30 years (for one hour) with respect to D for 4 Stage vs. 3 Stage
Total Energy Contracted

\[D = 0.04 \]

\[D = 0.50 \]
Total Energy Contracted D=0.50
Contact Information

Robert Entriken, Ph.D.
Senior Project Manager, EPRI Grid Operations & Planning
rentrike@epri.com
650-855-2198